Description of the
Cortland Tools: Part I
Preliminary Notes

Preliminary Notes: 1/30/86

Writer: Willam H. Harris
Apple User Education

Copyright © 1985 Apple Computer, Inc. All rights reserved.

Description of the Cortland Tools: Part |

Changes Since Last Draft

This is the first draft of this document. The sources used to prepare this document are as
follows:

Tool Locator ERS 12/3/85
QuickDraw II ERS 1/15/86
Memory Manager ERS 11/27/85
Event Manager ERS 11/25/85
Miscellaneous Tools 1/10/86

Preliminary Notes i 1/30/186

Descriprion of the Cortland Tools: Part]

Preliminary Notes i 1/30/86

Description of the Cortland Tools: Part |

Contents

Preface
About This Manual
Conventions in the Function Descriptions

Chapter 1. ROM Tool Overview °
Introduction
Conventions in the Function Descriptions

bd et ok

Chapter 2. Tool Locator
Introduction

Addressing Tool Sets and Functions
Structure of the Tool Locator

Tool Locator System Initialization
Disk and RAM Structure of Tools
The Tool Locator Calls

11 Chapter 3. QuickDraw II
11 Overview

11 Basic Concepts and Terminology
14 The Drawing Environment

00 00 1 O\ L L in wWWww

14 Drawing Location

14 Pen State

15 Pen Modes

16 Clipping

17 GrafProcs and GrafPort

17 Data Structures
19 Hardware and the Drawing Environment

19 Color Table
20 Fill Mode -
20 Interrupts

20 Housekeeping Functions

21 Global Environment Calls

23 GrafPort Calls

25 Cursor-Handling Routines

26 Pen, Pattern, and Drawing Mode Calls
27 Calculations With Rectangles

29 Rectangle Calls

30 Pixel Transfer Calls

30 Calculations With Points

31 Calculations With Regions

35 Graphic Operations on Region Calls
36 Miscellaneous Utilities

Preliminary Notes i} 1/30/186

Description of the Cortland Tools: Part I

Chapter 4. Memory Manager

Overview

Properties of Memory Blocks
Allocation Attributes
Modifiable Attributes

Housekeeping Functions

Memory Allocating Functions

Memory Freeing Functions

Block Information Functions

Locking and Unlocking Functions

Purge Level Functions

Free Space Functions

Chapter 5. Event Manager
Overview
Event Types
Mouse Events
Keyboard Events
Window Events
Other Events
Event Priority
Event Records
Event Code
Event Message
Modifier Flags
Event Masks
Using the Event Managers
Responding to Mouse Events
Responding to Keyboard Events
Responding to Window Events
Responding to Other Events
Posting and Removing Events
Other Operations
The Journaling Mechanism
Housekeeping Functions
Accessing Events Through the Toolbox Event Manager
Reading the Mouse .
Miscellaneous Toolbox Event Manager Routines
Posting and Removing Events
Accessing Events Through the OS Event Manager
Miscellaneous OS Event Manager Routines

Chapter 6. Other ROM Tools
SANE

Desk Manager

Sound Manager

Preliminary Notes v

1/30/186

Description of the Cortland Tools: Part]

Chapter 7. Miscellaneous ROM Tools

Overview

Housekeeping Functions
Math Functions

Battery RAM Functions
Clock Routines

Text Routines

Vector Initialization Routines
HeartBeat Interrupt Queue
System Death Manager

Get Address

Mouse Tools

ID Management

Interrupt Control

Firmware Entry Points

Tick Counter

Basic Entry Points

HEX to ASCII

PackBytes and UnPackBytes

Preliminary Notes

1/30/86

Description of the Cortland Tools: Part]

Preliminary Notes vi 1/30/86

Description of the Cortland Tools: Part]

Preface
About This Manual

This manual describes the Apple Cortland Tools available in ROM for the application
developer. Under most circumstances, you don't need to know whether a tool is in ROM
or RAM; we describe the ROM-based tools in this book simply as a matter of convenience.

For the description of the RAM-based Apple tools, refer to Description of the Cortland
Tools, Part II (that document is not yet available). For more detailed information about
how to write tools, refer to Using and Writing Cortland Tools. '

Please note that the information presented in this manual is preliminary. It may change
before final release of the product and the manual.

Conventions in the Function Descriptions

The description of each function in this book is presented in the following format:

ToolCall Brief description of the function of the tool.
input Param] TYPE
input Param2 TYPE
output Param3 TYPE

Further description of the function and the Params, if necessary.

The TYPE indicates the data type for the element and can be any one of the following:
* BYTE assembles a byte containing the givcn expression value.
* WORD assembles a 2-byte word containing the given value.
* LONG assembles a 4-byte location containing the given value.
* BLOCK reserves a block of storage consisting of a specified number of bytes.
+ INTEGER.
* LONGINT is a long integer.
* POINTER.
* HANDLE is a pointer to a pointer.

Preliminary Notes 1 1/30/86

Description of the Cortland Tools: Part]

Preliminary Notes 2 1/30/186

Description of the Cortland Tools: Part]

Chapter 1

ROM Tool Overview

This chapter will eventually present an overview of the Cortland tools always present in
ROM.

Preliminary Notes 3 1/30/186

Description of the Cortland Tools: Part [

Preliminary Notes 4 1/30/86

Description of the Cortland Tools: Part [

Chapter 2

Tool Locator

Introduction

This chapter describes the tool whose job it is to allow tools and applications to
communicate among themselves; this tool is called the Tool Locator. If you are simply
using the Cortland tools that Apple provides, you won't need to call any functions in the
Tool Locator, nor will you see any evidence of it under normal circumstances. You only
need to know how the Tool Locator works if you are writing your own tool set.

Addressing Tool Sets and Functions

Each tool is assigned a permanent tool number. Assignment starts at one and continues
with each successive integer. Each function within a tool is assigned a permanent function
number. For the functions within each tool, assignment starts at one and continues with
each successive integer. Thus, each function has a unique, permanent identifier of the form
(TSNum,FuncNum). Both the TSNum and FuncNum are 8-bit numbers.

So far, the following numbers have been assigned:
TSNum Descriptions

Tool Locator (ROM resident)

Memory Manager (ROM resident)

Misc. Tools (ROM resident)

Graphics Core Routines (ROM resident)
Event Manger (ROM resident)
ProDOS-16 (RAM resident)

AW AW -

For each tool, the following calls must be present:

FuncNum Descriptions
1 boot initialization function for each tool
2 application startup function for each tool
3 application shutdown function for each tool
4 version information

Each tool has a boot initialization function that is executed at boot time by either the ROM
startup code or the ProDOS startup code. In addition, each tool has an application startup
function, an application shutdown function to allow an application to turn each tool "on"
and "off", and a version call that returns information about the version of the tool.

All tools return version information in the form of a word. The high byte of the word

indicates the major release number (starting with 1). The low byte of the word indicates the
minor release number (starting with 0). The most significant bit of the word indicates

Preliminary Notes 5 1/30/186

‘Description of the Cortland Tools: Part I

whether the code is an official release or a prototype (no distinction between alpha, beta, or
other prototype releases is made).

P Major Minor
I l |

Structure of the Tool Locator

The Tool Locator requires no fixed ROM locations and a few fixed RAM locations. All
functions are accessed through the tool locator via their tool set number and function
number. The Tool Locator uses the tool set number to find an entry in the Tool Pointer
Table (TPT). This table contains pointers to Function Pointer Tabies (FPT). Each tool set
has an FPT containing pointers to the individual functions in the tool. The Tool Locator
uses the function number to find the address of the function being called.

Each tool in ROM has an FPT in ROM. There is also a TPT in ROM pointing to all the
FPT's in ROM. One fixed RAM location is used to point to this TPT in ROM. This
location is initialized at power up and warm boot by the firmware. In this way the address
of the TPT.in ROM does not ever have to be fixed.

The TPT has the following form:
Count (4 bytes)
Pointer to TS 1 (4 bytes)
Pointer to TS 2 (4 bytes)
An FPT has the following form:

Count (4 bytes)
(Pointer to F1) - 1 (4 bytes)
(Pointer to F2) - 1 (4 bytes)

In both tables, the count is the number of entries plus 1.

Tools are to obtain any memory they need dynamically (using as little fixed memory as
possible). To use memory obtained through a memory manager, a tool needs some way to
find out where its data structures are. The tool locator system maintains a table of work
area pointers for the individual tools. The Work Area Pointer Table (WAPT) is a table of
pointers to the work areas of individual tools. Each tool will have an entry in the WAPT
for its own use. Entries are assigned by tool number (tool four has entry four and so on).
A pointer to the WAPT must be kept in RAM at a fixed memory location so that space for
the table can be allocated dynamically. At firmware initialization time, the pointer to the
WAPT is set to zero.

Preliminary Notes 6 1/30/86

Description of the Cortland Tools: Part]

The tool locator system permanently reserves some space in bank $E1). Itis used as
follows:

(4 bytes) Pointer to the active TPT. The pointer is to the ROM-based TPT if there are no
RAM-based tool sets and no RAM-based ROM patches. Otherwise, it will
point to a RAM-based TPT.

(4 bytes) Pointer to the active user's TPT. This pointer is zero initially, indicating that
no user tools are present.

(4 bytes) Pointer to the Work Area Pointer Table (WAPT). The WAPT parallels the
TPT. Each WAPT entry is a pointer to a work area assigned to the
corresponding tool set. At startup time, each WAPT entry is set to zero,
indicating no assigned work area.

(4 bytes) Pointer to ;he user's Work Area Pointer Table (WAPT).
(16 bytes) Entry points to the dispatcher.
This is the only RAM permanently reserved by the tool locator system.

Tool Locator System Initialization

Each tool set must be initialized before use by application programs. Two types of
initialization are needed: boot initialization and application initialization. Boot initialization
occurs at system startup time (boot time); regardless of the applications to be executed, the
system calls the boot initialization function of every tool set. Thus, each tool set must have
a boot initialization routine (FuncNum = 1), even if it does nothing. This function has no
input or output parameters. . :

Application initialization occurs during application execution. The application calls the
application startup function (FuncNum=2) of each tool set that it will use. The application
startup function performs the chores needed to start up the tool set so the application can
use it. This function may have inputs and outputs. Each tool set will define what they are.
A common input will be the address of space in bank zero that the tool can use.

The application shutdown function (FuncNum=3) should be executed as soon as the
application no longer needs to use the tool. The shutdown releases the resources used by
the tool. As a precaution against applications that forget to execute the shutdown function,
the startup function should either execute the shutdown function itself or do something else
to assure a reasonable startup state. This function may have inputs and outputs as well.
Again they are defined by the individual tools.

The provision of two initialization times reflects the needs of currently envisioned tools.
For example, the Memory Manager requires boot time initialization because it must operate
properly even before any application has been loaded. On the other hand, SANE needs to
be initialized only if the system executes some application or desk accessory that uses it.
Initializing only the tool sets that will be used saves resources, particularly RAM.

Preliminary Notes 7 1/30/86

Descriprion of the Cortland Tools: Part |

Disk and RAM Structure of Tools

This section will eventually discuss additional details of dynamically loaded, RAM-based
tool sets. The exact form of tools on disk is undecided at this time.

The Tool Locator Calls

BootInit Initializes the Tool Locator and all other ROM-based Tool Sets.
Applnit Does nothing.
AppEnd Does nothing.
Version Returns the version of the Tool Locator.
output Version WORD
GetTsPtr Returns pointer to the Function Pointer Table of the specified tool
set.
input UserOrSystem WORD
input TSNum WORD
input Poinzer POINTER
SetTSPtr Installs the pointer to a Function Pointer Table in the appropriate
Tool Pointer Table.
input UserOrSystem WORD
input TSNum WORD
input Poinzer POINTER

If the TPT is not yet in RAM, this tool copies the TPT to RAM.
(Memory for the TPT is obtained from the Memory Manager.) If
there is not enough room in the TPT for the new entry, the TPT is
moved to a bigger chunk of memory. Likewise, the WAPT table is
expanded if necessary (memory for the expansions is obtained from
the Memory Manager). If the new pointer table has any zero entries
old entries are moved from the old pointer table to the new pointer
table.

b

The call can be used to patch a portion of a Tool Set, rather than
replacing the Tool Set entirely.

Preliminary Notes 8 1/30/86

Description of the Cortland Tools: Part]

GetFuncPtr Returns pointer to the specified function in the specified Tool Set.

input TSNum WORD

input FuncNum WORD

output Poirzer POINTER
GetWAP Gets the pointer to the work area for the specified module.

input UserOrSystem WORD

input TSNum WORD

output Pointer POINTER
SetWAP Sets the pointer to the work area for the specified module.

input UserOrSystem WORD

input TSNum WORD

output Poirzer POINTER

Preliminary Notes 9 1/30/186

Description of the Cortland Tools: Part I

Preliminary Notes 10 1/30/86

Description of the Cortland Tools: Part]

Chapter 3

QuickDraw I1

Overview

QuickDraw II includes calls for manipulating the graphics environment and drawing
primitive graphic objects. Included in the graphics environment is information about:
drawing location, the coordinate system, and clipping.

The primitive objects supported are horizontal lines and pixel images. Additionally, lines,
rectangles, and regions are supported as higher-level graphics objects. All higher-level
objects are drawn using the lower-level horizontal lines.

The horizontal line-drawing routines draw with patterns. A pattern is a 64-pixel image
organized as an 8x8 pixel square that can define a repeating design. When a pattern is
drawn, it is aligned so that adjacent areas of the same pattern in the same graphics port will
blend with it into a continuous, coordinated pattern. ‘

Basic Concepts and Terminology

A pixel map is an area of memory containing a graphic image (the analogous QuickDraw
term is Bitlmage). This image is organized as a rectangular grid of dots called picture
elements, or pixels. Each pixel has an assigned value or color. The number of colors a
pixel may have depends on its size or chunkiness. Two sizes are possible: four-color and
sixteen-color. Exactly which colors map into the various pixel values is determined by a
color table, as described under Color Table later in this chapter. :

Pixel size in the display is controlled independently for each scan line. Each scan line has a
scan line control byte (SCB) which determines the scan line's properties. See Appendix B
for more details.

Pixels are frequently thought of as points in the Cartesian coordinate system, with each
pixel assigned a horizontal and vertical coordinate. Following the QuickDraw standard as
established for the Macintosh, the coordinate grid falls between, rather than on pixels. (See
Figure 1.) Each pixel is associated with the point that is above and to the left of it.

Preliminary Notes 11 1/30/86

Description of the Cortland Tools: Part [

Figure 1
Pixels, Points and Rectangles

0123456 7 8
0 7
1 p—&
. The rectangle is defined by
1000008
NOG 0006 the points (2,1) and (7,7)
Yy Y Y Y \OC
4 ><> \HH(<> It encloses 30 pixels.
5 A A A A
969000 ¢
6 > < O A pixel
7 N4 '
Y
8 hA . } A Point

This scheme allows a rectangle to divide pixels into two classes: those that fall within the
rectangle and those which fall outside the rectangle.

A pixel map need not be the area of memory associated with the graphics screen.
QuickDraw II can treat other memory as pixel map memory and draw into it as easily as
into the screen memory.

Drawing can be done in coordinates appropriate to the data being used. Data is mapped
from drawing space to the pixel map according to the information kept in two rectangles;
the Bounds Rectangle (BoundsRect) and the Port Rectangle (PortRect). Figure 2 illustrates
the Bounds and Port Rectangles. '

Preliminary Notes 12 1/30186

Description of the Cortland Tools: Part]

Figure 2. The Bounds and Port Rectangles
Conceptual Drawing Space (-16K.-16K thru 16K.16K)

BoundsRect

PortRect

Pixel Image
(Screen or
other
Memory)

Active Port Rect (intersection of the BoundsRect
and PortRect)

The BoundsRect is a rectangle that encompasses the entire pixel map. The upper left corner
of the BoundsRect is the point that is above and to the left of the first pixel in the pixel map.

The PortRect is a rectangle that describes the "active” region of the pixel map. The
intersection of these two rectangles is the only place that pixels in the pixel map will change
(ignoring the VisRgn and ClipRgn, discussed in the following paragraphs).

A SetOrigin call allows you to change both these rectangles. Their points remain in the
same relative location but the upper left corner (the origin) of the PortRect is set to the point
passed by SetOrigin. '

Drawing is the process by which pixels are altered in a pixel map. You may imagine a pen
drawing the image by placing dots of the appropriate color at each pixel that falls under its
path. _

Drawings are clipped when instructions to draw in inactive parts of the drawing space are
ignored. For example, if you are clipping to a rectangle defined by (100,100) and
(200,200) and I try to draw a line from (0,0) to (1000,1000), only the pixels that fall inside
the (100,100) through (200,200) range are affected.

QuickDraw II also provides for clipping to arbitrary regions. Drawings are clipped to the
intersection of two regions: the ClipRgn (a user-maintained clipping region) and the
VisRgn (a system-maintained clipping region). This clipping works on the Cortland in the
same manner as it does on the Macintosh.

Preliminary Notes 13 1/30/86

Description of the Cortland Tools: Part]

Slabs and Slices
Graphics objects are drawn one scan line at a time. For objects drawn with patterns, the
part of the object drawn on a scan line is a "Slab". For objects drawn from other pixel

maps, the part of the object drawn on a scan line is a "Slice". The routines that draw slabs
and slices can be accessed outside the ROM.

The Drawing Environment

The drawing environment is a set of rules that explain how drawing actions behave. The
environment includes information about where drawing will occur (what part of memory,
its chunkiness), in what coordinate system, how it will be clipped, the pen state, the font

state, and some pointer information. The various parts of the drawing environment are
described in this section.

Drawing Location
QuickDraw II allows drawmg anywhere in memory. The most common location may be
the super hi-res screen, but a pixel map anywhere in memory and of almost any size is
acceptable as long as the entire destination pixel map is in a single bank.
PortSCB — Flag to indicate chunkiness of pixel map and master color palette.
Pointer to the pixel map — Points to the first byte in the pixel map.
Width — Number of bytes in a row of pixels (QuickDraw term is RowBytes).

BoundsRect — Rectangle that describes the extent of the pixel map and imposes a
coordinate system on it.

PortRect — Rectangle that describes the active area of Data space.

Pen State

QuickDraw II maintains a graphics pen (position and size). Its position is used for drawing
text, and its size is used for determining the size of a frame. Quickdraw II does two kinds
of drawing; normal drawing and erasing. In normal drawing, the destination pixel map
depends on what it was to start with, the original fill pattern or pixel image and the drawing
mode. Erasing just fills the affected pixels with the background pattern.

Pen Location -- A point in data space.
Pen Size -- A point describing the width and height of the pen.

Pattern Transfer Mode -- One of the eight transfer modes supported by the
Primitives. This mode is used when drawing horizontal lines with the fill pattern.

Preliminary Notes ’ 14 1/30/186

Description of the Cortland Tools: Part]

Fill Pattern -- The fill pattern is used when drawing horizontal lines. When any
routine uses the horizontal line drawing routine to draw an object, the object will
appear in this pattern.

Background Pattern -- The background pattern is used when erasing horizontal
lines. When any routine erases horizontal lines in the shape of an object, that
object will appear in this pattern.

Pen Modes

There are eight different pen modes. These modes are used to derive the color of a pixel
when it is being drawn to. Each pixel is made up of a series of bits. The pen operates on
the individual bits in a pixel as single units. In this way logical binary operations are well
defined. '

The following pen modes are available. (Each 1 and 0 is the value of a bit in a pixel.)

Mode 0 (pencopy). Copy pen to destination. This is the typical drawing mode.
| Pen
pencopy | 0 1
Dest. 0| 0 1
1 | 0 1
Mode 1 (penOR) Overlay (OR) pen and destination. You can use this mode to
non-destructively overlay new images on top of existing
images.
| Pen
penOR | 0 1

Dest. 0| 01
1

Mode 2 (penXOR) Exclusive or (XOR) pen with destination. You can use this
mode for cursor drawing and rubber-banding. If an image is
drawn in penXOR mode, the appearance of the destination at
the image location can be restored merely by drawing the

image again in penXOR mode.
| Pen
penXOR | 0 1
Dest. O] 01
1 1 10

Preliminary Notes 15 1/30/186

Description of the Cortland Tools: PartI

Mode 3 (penBIC) Bit Clear (BIC) pen with destination (NOT pen) AND
destination). You can use this mode to explicitly erase (turn
off) pixels, often prior to overlaying another image.

| Pen
penBIC | 0 1

Dest. 0] 0O
.1 |1 10

The following modes are inverses of the above modes; that is, the pen color is inverted
prior to performing the associated operation.

Mode 4 (notpencopy) Copy inverted pen to destination. You can use this mode to
draw inverted images.

| Pen
notpenCOPY | 0 1

Dest. 0 | 1 0
1 1 10

Mode 5 (notpenOR) Overlay (OR) inverted pen with destination. You can use
this mode to overlay inverted images.

| Pen
notpenOR | 0 1

Dest. 0] 10
1

Mode 6 (notpenXOR) Exclusive or (XOR) inverted pen with destination. This
mode behaves similarly to penXOR mode.

| Pen

notpenXOR | 0 1
Dest. 0] 1 0
1] 0 1

Mode 7 (notpenBIC) Bit Clear (BIC) inverted pen with destination (pen AND
destination). You can use this mode to display the
intersection of two images. _

| Pen

notpenBic | 1

0
Dest. O] 0O
11 10

Preliminary Notes 16 1/30/186

Description of the Cortland Tools: Part]

Clipping

As stated earlier, a drawing may be clipped to a variety of rectangles and regions.

GrafProcs and GrafPort

QuickDraw II's local environment includes clipping information, handles to pictures,
regions, and polygons, as well as a pointer to the GrafProcs record. The GrafProcs record
holds pointers to all the standard drawing functions. A programmer may change the
pointers in this record and cause QuickDraw II to use a different drawing routine.

An entire drawing environment is kept in a single record (called the GrafPort), which can
be saved and restored with a single call. This allows for simple context switching. The
programmer has two ways of changing the drawing environment. First, he or she can
change the contents of the GrafPort directly and have these changes apply to the drawing
environment without making any other calls. Or, he or she can use some of the many calls
to set the individual fields in the GrafPort.

Data Structures

Pointer
P 4 bytes
Point
\% 2 bytes
H 2 bytes
Rect -
V1 2 bytes
H1 2 bytes
V2 2 bytes
H2 2bytes
String _
Standard ProDOS string starting with a length byte followed by up to 255
characters of data.
An_SCB_Byte
Bits Meaning
0-3 Color Table
4 Reserved
5 Fill O=off 1=0n
6 Interrupt O = off 1 = on
7 Color Mode 0=320 1=640

Preliminary Notes 17 1/30/186

- Description of the Cortland Tools: Part |

LoclInfo
MasterSCB : an_scb_byte
reserved : byte
PointerToPixellmage : pointer
Width : word
BoundsRect : rect

nibble = 0..15
twobit = 0..3

Pattern
case mode of
mode320:

mode640:

(packed array [0..63] of twobit);

PenState
PnlLoc: point
PnSize : point
PnMode : integer
PnPat : pattern

GrafPort
PortInfo.: LocInfo
PortRect : rect
BkPat : Pattern
Pnloc : Point
PnSize : Point
PnMode : integer
PnPat : pattern
PnVis : integer
FontPtr : Pointer
Txface : Style
TxMode : integer
TxSize : integer
SpExtra : integer
FGColor integer
BGColor : integer

PicSave : pointer
RgnSave : pointer
PolySave : pointer
GrafProcs : pointer

Preliminary Notes

(packed array [0..63] of nibble

18

).;

1/30/186

Description of the Cortland Tools: Part]

Hardware and the Drawing Environment

The Super Hi-Res Graphics hardware can display 200 scan lines and many colors. The
following four features are controlled independently for each scan line:

Color Table One of 16
Fill Mode On or Off
Interrupt On or Off
Color Mode 320 vs 640 pixels per scan line

The scan line control byte (SCB) controls these four features for each scan line. The low
nibble of the SCB identifies the color table to be used for this scan line. Bit 4 is reserved.
Bit 5 of the SCB controls fill mode: 1 is on, O is off. Bit 6 of the SCB controls interrupts:
if the bit is set then an interrupt will be generated when the scan line is refreshed. Bit 7 of
the SCB controls the mode: 0 is 320, 1 is 640.

7654 3210

eoeferepefe

'MIF R Color Table

Color Table

A color table is a table of 16 2-byte entries. The low nibble of the low byte is the intensity
of the color blue. The high nibble of the low byte is the intensity of the color green. The
low nibble of the high byte is the intensity of the color red. The high nibble of the high
byte is not used. Pixels in 320 mode are 4 bits wide and their numeric representation
identifies a color in the color table. Pixels in 640 mode are 2 bits wide and their numeric
representation identifies a color in a subset of the full color table. The first pixel in the byte
(bits O and 1) selects one of four colors in the table from 0 through 3. The second pixel in
the byte (bits 2 and 3) selects one of four colors in the table from 4 through 7. The third
pixel in the byte (bits 4 and 5) selects one of four colors in the table from 8 through 11.
The fourth pixel in the byte (bits 6 and 7) selects one of four colors in the table from 12
through 15.

HighByte LowByte
High Low High Low
Nibble Nibble Nibble Nibble

Reserved Red Green Blue

Preliminary Notes 19 1/30/186

Description of the Cortland Tools: Part]

Fill Mode
When fill mode is active, the zeroth color in the color table becomes inactive. A pixel with
a numeric value of zero serves as a place holder, indicating that the pixel should be
displayed as the same color last displayed. '

Scan Line Values

1000020000010000

Colors Shown

BBBBBWWWWWWBBBBB

Interrupts

Interrupts can be used to synchronize drawing with vertical blanking so pixels are not
changed as they are being drawn (a pixel is drawn once every 1/60 of a second). Interrupts
can also be used to change the color table before a screen is completely drawn. This will
allow a program to show more than 256 colors on the screen at once (but at the cost of
servicing the interrupt).

Housekeeping Functions

QDBootInit Initializes QuickDraw II at boot time. The function puts the address
of the cursor update routine into the bank E1 vectors.

QDAplInit Initializes Quickdraw II, sets the current port to the standazd port,
and clears the screen.
input ZeroPageloc WORD
input MasterSCB WORD
input MaxWidth WORD
input ProgramlD WORD

The MasterSCB is used to set all SCB's in the super hi-res graphics
screen. MaxWidth is a number that tells QuickDraw II the size in
bytes of the largest pixel map that will be drawn to. This allows
QuickDraw II to allocate certain buffers it needs only once and keep
them throughout the life of the application. ProgramiD is the ID
QuickDraw II will use when getting memory from the Memory
Manager. All memory is reserved in the name of this ID.

Preliminary Notes 20 1/30/186

Description of the Cortland Tools: Part]

QDQuit Frees up any buffers that were allocated.
QDVersion Returns the version of QuickDraw II.
output Versionlnfo WORD

Global Environment Calls

GetStandardSCB Returns a copy of the standard SCB in the low byte of the word.
output TheStandardSCB~ WORD

This corresponds to:

Bits Meaning

0-3 Color Table O

4 Reserved

5 Fill off

6 Interrupt off

7 Color Mode = 320

SetMasterSCB Sets the master SCB to the specified value (only the low byte is
used).

input AnSCB WORD
The master SCB is the global mode byte used throughout

QuickDraw [I. The master SCB is used by routines like InitPort to
decide what standard values should be put into the GrafPort.

GetMasterSCB Returns a copy of the master SCB (only the low byte is valid).
output AnSCB WORD

InitColorTable Returns a copy of the standard color table for the current mode.

input TablePrr POINTER

The entries are as follows for 320 mode:

Pixel Value Name Master Color

0 Black 000 Opposite of White
1 Red FOO

2 Green - 0FO0

3 Blue OO0OF

4 Teal 088

5 7? 808

Preliminary Notes 21 1/30/186

Description of the C;orzland Tools: Part]

SetColorTable

GetColorTable

SetColorEntry

Preliminary Notes

6 Brown 066
7 DarkGray 555
8 LightGray AAA
9 Orange F80
10 7? 8F8
11 m F88
12 Yellow FFO
13 Magenta FOF
14 Cyan OFF
15 White FFF Opposite of Black
The entries are as follows for 640 mode:
Pixel Value Name Master Color
0 Black 000 Opposite of White
1 Red FOO
2 Green OFO0
3 Blue FFF
Sets a color table to specified values.
input TableNumber WORD
input TablePrr POINTER

Tablenumber identifies the table to be set to the values specified in
the table pointed to. The 16 color tables are stored starting at
$9E00. Each table takes $20 bytes. Each word in the table
represents one of 4096 colors. The high nibble of the high byte is

ignored.

Fills a color table with the contents of another color table.

input TableNumber WORD
input TablePrr POINTER

Tablenumber specifies the number of the color table whose contents
are to be copied; TablePrr points to the color table which is to receive
the contents.

Sets the value of a color in a specified color table.

input TableNwnber WORD
input EntryNumber WORD
input Value WORD

Tablenumber specifies the number of the color table; EntryNwnber
specifies the number of the color to be changed; Value sets the color.

2 1/30/86

GetColorEntry

SetSCB

GetSCB

SetAlISCBs

Descriprion of the Cortland Tools: Part]

Returns the value of a color in a specified color table .

input TableNumber WORD
input EntryNumber WORD
output Value WORD

Tablenumber specifies the number of the color table; EnryNumber
specifies the number of the color to be examined; Value returns the

color.
Sets the scan line control byte (SCB) to a specified value.

input ScanLine WORD
input Value WORD

Scanline identifies the scan line whose SCB is to be set; Value sets
the SCB.

Returns the value of a specified scan line control byte (SCB).

input Scanline WORD
output Value WORD

Scanline identifies the scan line whose SCB is to be examined:;
Value returns the value of the SCB.

Sets all scan line con&ol bytes (SCBs) to a specified value.
input Value WORD

GrafPort Calls

OpenPort

InitPort

Preliminary Notes

Initializes specified memory locations as a standard port and
allocates new VisRgn and ClipRgn.

input PortPrr LONG

Initializes specified memory locations as a standard port.

input PortPr LONG

InitPort, unlike OpenPort, assumes that the region handles are
valid and does not allocate new handles. Otherwise, InitPort
performs the same functions.

23 1/30/86

-Description of the Cortland Tools: Part |

ClosePort

SetPort

GetPort

SetPortInfo

SetPortSize

MovePortTo

SetOrigin

Preliminary Notes

Deallocates the memory associated with a port.

input PortPrr LONG
All handles are discarded. If the application disposes of the memory

containing the port without first calling ClosePort, the memory
associated with the handles is lost and cannot be claimed.

Makes the specified port the current port.

input PortPrr LONG

Returns the handle to the current port.

output PortPrr LONG

Sets the current port's map information structure to the specified
location information.

input Loclnfo LONG

Changes the size of the current GrafPort's PortRect.

input Width WORD
input Height WORD

This does not affect the pixel map, but just changes the active area of
the GrafPort. The call is normally used by the Window Manager.

Changes the location of the current GrafPort's PortRect.

input Width WORD
input Height WORD

This does not affect the pixel map, but just changes the active area of
the GrafPort. The call is normally used by the Window Manager.

Adjusts the contents of PortRect and BoundsRect so that the upper
left corner of PortRect is set to the specified point.

input H WORD
input 1% WORD

VisRgn is also affected, but ClipRgn is not. The pen position does
not change.

4 1/30/86

SetClip

GetClip

ClipRect

Description of the Cortland Tools: Part

Sets the clip region to the region passed by using CopyRgn.

input RgnHandle LONG

Returns a handle to the current clip region.

output RgnHandle LONG

Changes the clip region of the current GrafPort to a rectangle
equivalent to a given rectangle.

input RectPrr LONG

This does not change the region handle, but affects the region itself.

Cursor-Handling Routines

SetCursor

GetCursorAdr

Preliminary Notes

Sets the cursor to the image passed in the cursor record.

input CursorPmr LONG

If the cursor is hidden, it remains hidden and appears in the new
form when it becomes visible again. If the cursor is visible, it

appears in the new form immediately.

Returns a pointer to the current cursor record.

input CursorPrr LONG

1/30186

Description of the Cortland Tools: Part]

HideCursor Decrements the cursor level. A cursor level of zero indicates the
cursor is visible; a cursor level less than zero indicates the cursor is
not visible.

ShowCursor Increments the cursor level unless it is already zero. A cursor level

of zero indicates the cursor is visible; a cursor level less than zero
indicates the cursor is not visible.

ObscureCursor Hides the cursor until the mouse moves. This tool is used to get the
cursor out of the way of typing.

Pen, Pattern, and Drawing Mode Calls

HidePen Decrements the pen level. A pen level of zero indicates drawing will
occur; a pen level less than zero indicates drawing will not occur.

ShowPen Increments the pen level unless it is already zero. A pen level of
zero indicates that drawing will occur; a pen level less than zero
indicates drawing will not occur.

GetPen Returns the pen location.
output PointPr LONG
SetPenState Sets the pen state in the GrafPort to the values passed.
input PenStazePrr LONG
GetPenState Returns the pen state from the GrafPort.
output PenStatePrr LONG
PenSize Sets the current pen size to the specified pen size.
input Width LONG
input Heigh: LONG
PenMode Sets the current pen mode to the specified pen mode.
input PenMode LONG

Preliminary Notes 26 1/30/186

PenPat

BackPat

PenNormal

MoveTo

Move

LineTo

Line

Calculations

SetRect

Preliminary Notes

Description of the Cortland Tools: Part]

Sets the current pen pattern to the specified pen pattern.

input PatternPrr LONG

Sets the background pattemn to the specified pattern.

input ParternPrr LONG

Sets the pen state to the standard state (PenSize = 1,1; PenMode
= copy; PenPat = Black). The pen location is not changed.

Moves the current pen location to the specified point.
input H WORD
input Vv WORD

Moves the current pen location by the specified horizontal and
vertical displacements.

input dh WORD
input & WORD

Draws a line from the current pen location to the specified point.

Draws a line from the current pen location to a new point specified
by the horizontal and vertical displacements.

input d WORD
input v WORD

With Rectangles

Sets the rectangle pointed to by RectPtr to the specified values.

input RectPmr LONG

input Left WORD

input Top WORD

input Right WORD

- input Bortom WORD
27 1/30/186

Description of the Cortland Tools: Part]

Offsets the rectangle pointed to by RectPtr by the specified

OffsetRect
displacements.
input RectPr LONG
input dh WORD
input v WORD
dv is added to the top and bottom; dh is added to the left and right.
InsetRect Insets the rectangle pointed to by RectPtr by the specified
displacements.
input | RectPrr LONG
input dh WORD
input av WORD
dv is added to the top and subtracted from the bottom; dk is added
to the left and subtracted from the right.
SectRect Calculates the intersection of two rectangles and places the
intersection in a third rectangle.
input SrcRectAPrr LONG
input SrcRectBPrr LONG
input DestRectPrr LONG
output Boolean WORD
If the result is non-empty, the output 1s TRUE,; if the result is empty,
the output is FALSE.
UnionRect Calculates the union of two rectangles and places the union in a third
rectangle.
input SrcRectAPrr LONG
input SrcRectBPrr LONG
input DestRectPtr LONG
output Boolean WORD
If the result is non-empty, the output is TRUE; if the result is empty,
the output is FALSE.
PtInRect Detects whether a specified point is in a specified rectangle.
input PtPrr LONG
input RectPmr LONG
output Boolean WORD

For example, PtInRect((10,10)),((10,10,20)) is TRUE but
PtInRect((20,20)),((10,10,20)) is FALSE.

Preliminary Notes 28

1/30/86

Descriprion of the Cortland Tools: Part]

Pt2Rect Copies one point to the upper left of a specified rectangle and
another point to the lower right of the rectangle.

input PtlPrr LONG

input PP LONG

input RectPrr LONG
EqualRect Compares two rectangles and returns TRUE or FALSE.

input RI1Pwr LONG

input - R2Pr LONG

output Boolean . WORD
EmptyRect Returns whether or not a specified rectangle is empty.

input RectPrr LONG

outpu Boolean WORD

An empty rectangle has the top greater than or equal to the bottom,
or the left greater than or equal to the right.

Rectangle Calls

FrameRect Draws the boundary of the specified rectangle with the current
pattern and pen size.

input RectPr LONG
Only points entirely within the rectangle are affected.

PaintRect Paints (fills) the interior of the specified rectangle with the current
- pen pattern.
input RectPr LONG
EraseRect Paints (fills) the interior of the specified rectangle with the
background pattern.
input RectPrr LONG
InvertRect Inverts the pixels in the interior of the specified rectangle.
input RectPrr LONG
FillRect Paints (fills) the interior of the specified rectangle with the specified
pattern.
input RectPrr LONG
input Pattern LONG

Preliminary Notes 29 1/30/86

Description of the Cortland Tools: Part |

Pixel Transfer Calls

ScrollRect Shifts the pixels inside the intersection of the specified rectangle,
VisRgn, ClipRgn, PortRect, and BoundsRect.
input RectPointer POINTER
input dh WORD
input av WORD
input UpdateRgn HANDLE

The pixels are shifted a distance of dh horizontally and dv vertically.
The positive directions are to the right and down. No other pixels
are affected. Pixels shifted out of the scroll area are lost. The
backgound pattern fills the space created by the scroll. In addition
UpdateRgn is changed to the area filled with BackPat.

Note that this UpdazeRgn must be an existing region,; it is not created
by ScrollRect. :

PaintPixels Transfers a region of pixels.
input PantParamPrr - LONG
PaintParamPrr is equal to the follo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>