
o

o Description of the
Cortland Tools: Part I

Preliminary l\otes
Prelininary Nores: Lß0t86

T/riær: V/illam H. Harris
Apple Uscr Education

*rr '

Ç
Copyright @ 1985 Apple Compurcr, krc. All rights reserved.

r'

(^l

L

Descrþtbnof tle Conland,Tools: part I

Changes Since Last Draft

This is the first dr¿ft of this documenl The sor¡rces uscd to preparc this document are asfollows:

Tool l-ocatorERS l Zßtgs
QuickDraw tr ERS Ußß6
Memory tvfanagerERS I UZTtgs
Event Manager ERS nnißs
Mscellaneous Tools I n}tg6

I
(../

Preliminary Notes I/30/86

Descríption of the Cortland,Tools: part I

aPreliminary Notes I/30t86

t,

I
1
1

3
3
3

5
)
J
6
7I
8

t1
11
11
t4
14
L4
15
16
t7
t7
r9
19
20
20
20
2t
23
25
26
27
29
30
30
31
35
36

Contents

Preface
About This lvfa¡rual
Conventions in the Fr¡nction Descriptions

Chapter 1. ROM Tool Overview
Introduction
Conventions in the Function Descriptions

Chapter 2. Tool Locator
Intoduction
Addressing Tool Ses and Functions
Sur¡cn¡¡e of the Tool l-ocator
Tool I-ocaor Sysæm l¡itiali2¿¡iq¡
Disk and RAI,Í Sur¡cn¡rc of Tools
The Tool Locator Calls

Chapter 3. QuickDraw fI
Oven¡iew
q"siq Concepts and Terminology
The Drawing Environment

Dawing l-ocation
Pen State
Pen Modes
Clipping
GrafProcs and GrafPort

Data Stn¡cn¡rcs
Hardwa¡e and the Drawing Environment

ColorTable
FiU Mode.
hæmrpts

Housckeepin g Functions
Global Environment Calls
GrafPort Calls
Cursor-Ilandling Routines
Pen, Pattern, and Drawing Mode Calls
Calculations V/ith Rccungles
Recungle Calls
Pixel Transfer Calls
Calculations With Points
Calculations Y/ith Regions
Graphic Opcrations on Region Calls
Miscellaneous Utilities

Descríptionof tlu ConlandTools: Pan I

'\-'
PrelimirwryNotes u 1/30/86

Descríption of tlrc ConlanàTools: Part I

37
37
37
37
38
38
39
39
4A
40
4l
4L

Chapter 4. Memory Manager
Ove,r¡¡iew
Properties of Memory Blocks

Allocation Artribures
Modifiable Anributes

Housekeeping Functions
MEmory Allocating Functions
Memory Freeing Functions
Block Information Functions
I-ocking and Unlocking Functions
Purge I¡vcJ Functions
Free Space Functions

Chapter 5. Event Manager
Overview
EvEnt Types

Mouse Events
Keyboard Events
Window Events
Ottrer Events

EveritPriority
Event Records

Event Code
EventMessage
Modifier Flags
Event Masls

Using the Event Managers
Responding to Mouse Events
Responding to Keyboa¡d Events
Responding to \ü/indow Evenß
Rcsponding to Other Events
losting and Removing Evørts
Ottrer Operations

The Journaling Mechanism
Housekeepin g Functions
Accessing Evqrts Through the Toolbox Event Manager
Reading the Mouse
Miscellaneous Toolbox Event Manager Routines
Posting and Removing Events
ôç"o-rlng Events_Through the OS Event Manager
Miscellaneous OS Event Manager Routines

Chapter 6. Other ROM Tools
SA}fE
Desk Manager
Sound Manager

f'

t,

43
43
4444
444
45
46
47
47
47
48
49
49
50
50
51

.515l
51
52
)J
54
))
56
57
58

59
59
59
59

NPrelíminary Notes I/30t86

Descþtionof the ConlandTools: Part I
ô

61
61
61
61
æ
66
67
70
7l
73
74
75
76
77
78
78
78
79
79o

Chapter 7. Miscetlaneous ROM Tools
Oven¡iew
Housekecping Functions
Math Functions
Bancry RAlvf Functions
Clock Routines
TextRoutines
Vcctor Initialization Routines
llcartBear Inæmrpt Queue
SysæmDeath tr[eùrager
GetAddrcss
Mouse Tools
IDlvfanagement
kramrpt Conuol
Firmwa¡e Enry Points
Tick Counter
Basic Entry Points
}IEX to ASCtr
PackByæs and UnPackByæs

U

U PreliminaryNotes v 1/30/86

Descriptionof tlv ConlandTook: Part I

wPreliminary Notes 1t30t86

a'
Descriptíonof the ConlandTools: Part I

Preface
About This Manual
This manual dcscribes the Apple Cortland Tools av¡ilable in ROM for the application
develo_per. U¡dermost circumst¿nces, you don't need to know whether aióof is in ROMorRAlr'f; we desctibe the ROM-based toots in this book simply as a matûer of ðonvenience.

I* it tjocription of the RAlvf-based eppþ tools, refer !o Description of tlæ Contand
lools, Part II (that document is not yet available). For morc detiiled iniormation about
how to write ools, rcfer toUsing añdwrtdng C'ontandTools.

Please noæ that the informatio¡ prese¡çd in this -manual is prelirninary. It may change
beforç final release of the product and the manual.

Conventions in the Function Descriptions
Thc description of each function in this book is presented in the following format:

Toolcall Brief description of tt¡e ii¡nction of the tool.

input PØØú TWEinput P@@t¿ Tl?Eoulput Pû@n3 TWE
Further dcscription of the function and the parons, if necessary.

The TfE indicaæs the data type for the element and can be any one of the following:
' BYTE assembles a byæ containing the given expression value.. S/ORD assembles a2-byteword containing thç given value.
. LONG assembles a 4-byæ location containing the given value.
' BI-OCK rcsErves a block of storage consisting of a sperified number of byæs.. INÏEGER.
. LONGINT is a long inæger.
. POINTER.
. IIANDLE is a pointcr to a poinær.

IPrelímitnryNotes 1t30/86

Description of tlu ConlandTools: part I

)Preliminary Notes 1t30t86

ô

o

(,

Descríption of th¿ Conland Tools : Pan I

Chapter 1

ROM Tool Overview
This chapærwill everitr¡ally prËsent an overview of the Cortland tools always prcsent inROM.

a

3U PrelimínaryNotes 1/30/86

Descríption oi ttn Cont¿nd Tools : part I

4Prelíminary Notes 1/30/86

Description of thc ConlandTools: Pan I

Chapter 2

Tool Locator
Introduction
This chapær describes.tt" t*-l who-se job it is to allow tools and applications to
communicate tlmong $egselves; this-tool is catled the Tool¡-ocaiôr. If you are simply
using the Cortland tools that Appte provides, yo-u won't need to call any i"n.tions in t¡eToo! Locator, nor îill Lou lg€ ãiry e:vidence of it under normal circumíuncä. vou oniy
need to know how the Tool l-ocaior works if you are uniting your o\¡/n tool set.

Addressing Tool Sets and Functions
e+qn t*.t is æsigned a permanent tool number. Assignment starts at one and continueswÍth each successivç {æger. .

Each function within a toot is assigned a permnnent functionnumber. For the functions within each tool, assignment st¡rts at-one a¡i¿ continues with
each successive inæger. T-hu!, eac_h fi¡nction haia unique, permanent identifier of the form(TSNum,FuncNum). Both the TSNum andFuncNurn aÉ^s-uit nurn¡ðn.- -

So far, the foilowing numben have been æsigned:

TSNum Descriptions

1 Tool Locaror (ROMrcsident)2 Memory hdanager (ROtvt rasidenQ3 Misc. Tools (Rôlvf resident)4 Graphics Corc Routines (ROM rcsident)5 Event Manger (Rotvt resident)6 PToDOS-16 ßAN,f rcsident) '

For each tool, the following calls must be pres€rit:

FuncNum Descriptions

boot initialization function for each tool
application starh¡p function for each ool
application shutdown function for each tool
version information

Each tool has a boot initiatization function that is executcd at boot time by either the ROM
*arû¡P code or the h.oDOS $artup-code. In addition, each tool has an ãppücation starrup
fi¡nction, an application shutdown-fi,¡nction to allow an application to tuni èach tool "onrr ^

and "off', and a.version call that rcn¡rns information abóuì the venion of the tool.

All tools retuÍi venion information in the form of a word. The high byte of the word
indicaæs the majoqrelease number (starting r¡/ith 1). The low UytJof tire word indicaæs the
minor release number (starting with 0). ftê most signifrcant bii of the word indicates

PrelímiraryNotes 5 It30tB6

I
2
3
4

Description of thc ConlandTools: Part I

whether the codc is an ofñcial rclease or a proûotype (no distinction between alpha, beta orother prototypc releases is made).

P Major Minorlttt

{

Structure of the Tool Locator
The Tool I-ocatorrequircs no fixed ROM locatio,ns and a few fixed RAÀ,f locations. All
functions a¡c accessed through the tool locator via their tool set number and function
number. The Tool Locator uses the tool set number to find ari entry in ttre Tooi poinær
Table q!). This table contains poinærs to Function Pointer Tabíes GTT) Eàch tool set
has an FPT co'ntaining pointers o-the individual functions in the tool. ihe îooi l-ocator
uses the frrnction number to find the add¡ess of the function being called-

Each tool in ROM has an FPT in ROM. There is also a TPT in ROM pointing to all theFPTs in ROM. One fixed RAI,Í location is used to point ûo this TFTh nõlü. ffrit
location is initialized.at po\¡/er up +nd w¿ûn çt Uy'ttre firmwa¡e. kr this ."./ tt. address
of the TPT.in ROM does notevà have to be fixed -J -

The TPT has the following form:

Count (4 b¡es)
Poinær to TS 1. Pointcr !o TS 2

An FPT has the following form:

Count (4 byæs)
(Poinær to Fl) - I
(Poinær to F2) - I

(4 byæs)
(4 byæs)

(4 byæs)
(4 byæs)

kr both tables, the count is the number of eneies plus l.
Tools are ûo obtain any memory.they r-reed dynamically (using as little fixed memory aspossible). -To use memory obtàined througli a memory inanãger, a tool needs some way rofind out wherc its daa stnrctures are. The-tool locatof sysæm-maintains atabla of work
area pointers for the individr¡al tools. The rü/ork Arca Póinær Table (WAFÐ is a table ofpointers to the work arcas of individual tools. Each tool will have an entry ií tte v/ApT
fon its own use. Entries are assigned.by_tool_number (tool four has entry'four and so on).
4 poinær to the ryAPT r.ntlst be kep in RAlf æ a fixeà memory locatiorí so that space foí
the able can be allocated dynamically. At firmwa¡e initiatizatio:n time, the poinær to the
1VAPT is set to zero.

6PrelimiruryNotes It30/86

t"
Descríption of th¿ Conla,ttdTools: part I

The tool locator systcm permanently rcserves somc sp¿rce in bank $E1). It is used asfollows:

(4 byæs) Poinær !o the active æT. T11: poinær is ro the ROM-based TFT if rhere a¡e noRAM-based tool sets and no nÁru-Uase¿ ROM pñt* ô-th-**ise, iiwill- --point to a RAlvf-based TpT.

(4 byæs) Poinær to the active usels TPT. This poinær is zero initially, indicating thatno user tools arc presenl

(4 bytes) þgto to the lñ/ork A¡ea Pointer Table (wAPÐ. Thc WApT parailels theTPT: E¿cl.wApr er¡üy.is a poinæ¡ to a work á¡eã assisnAìfih"
corresponding tool set Atstara¡p dme, each WAPT enË7 is set ro zero,indicating no assigned work a¡ea

(4 byæs) Poinær to the user's rù/ork A¡ea poinær Table (v/ApÐ.
(16 bytes) Entry points to the dispaæher.

This is the only RAr,f permanentry resened by the tool locator system.

Tool Locator System Initialization
Each tool set must bc initialized bcfore use by application programs. Two types ofj¡ftializatien arc needed: boot initialization

"iaãíUt "uäir"fifiI-ï;.'Ëófi"i i¿i*ionoccurs at system starfi¡p þ.c Q,oottirne); rcgardtess of the applicationJto U"
"i.ruted, theslstem.c?Is the boot initialization function õf euery tool ser' ftui, ãðrt-t"ori"t must havea boot initialization routine (FuncNum = 1), evenÉ üão"t notrtinË. ïtir.¡,nilon has noinput or ouþut P¿rameters

Application initialization occ:rs during ap'plication execution. The ap,plication calls theapplicati-on startup Stctioq (FuncNuni=2) of each tooir.t tir"t ir wiüGJ Thlþpucation
|.!ry-p$ryti3n performs the cho¡cs nec¿é¿ to stårt up tttJ toot t"t so o" appricarion canuse rt -fhis tunction'Yy.FY: lonot and ouputs. Eåch tool set will definä*trat tr,ey are.A common input wül be the addrËss of space in uant o-ttt"t ttre toofðã usi.'
The application shutdown-function (FuncNum=3) should be executed as soon as thept[.:¡T::gg* needs ûo use tric toor. ne í¡ut¿ówn rcreases rh";;õ;;s used byüe tool- As a precautigtt, ?gliltt applicatio.ns that -forget-to execuæ the shutdown functiãn,thestarnrpfi ¡nctionshouldéithereïecuætheshutdonä-runctionlsJf ore;so-.tningiliËto ösure a reasonable.sjartyp 9t4F.. This function may have inputt an¿ outpuis as well.Again they are dcfined by thè individr¡al tools. ¿ - -

lhe provision of nvo initieli'ation times reflects the needs oicurrently envisioned tools.For example, the Memory Mqrage.r rcquiræ boot time irid"tizadol Ël¡s; ii fn"sr operarepro.pc¡y-.evr Efo.T.anl anplicãtion hlæ been loadcd. on the otút h-ã;sÃr'¡E needs to
9_",.T,13:{ 9qrif the syitÈm exec-utes somc appricatiõn oi ¿c.k;.ä;¿;Ãät uses irImûallzing only the tool ses that will be used saïès rcsources, particularly ÍìafU.

7PreliminaryNotes I/30/86

1',
Descriptionof tlv ConlandTools: Part I

Disk and RAM Structure of Tools
This section will eventually-discuss rrldi¡ie¡¿l details of dynamically loade4 RAlvf-based
tool scts. Thc exact form of tools on disk is undccided at'this time.'

The Tool Locator Calls

Bootlnit hitializes thc Tool Iaator and all other RoM-based rool sets.

Applnit Does nothing.

Docs nothing.

Returns the venion of the Tool l-ocator

output Versbn

AppEnd

{ Versíon

SetTSPtr

WORD

GetTsPtr Returns pointer to the Function Pointer Table of the specified tool
set.

input
input
input

UseûrSystem
TSNlø¡zt
Poínter

User0rSystan
TSNUm
Poí¡tø

WORD
IWORD
POINTER

S/ORD
WORD
POINTER

þrqþ lhe parnle1 to a Fr¡nction Pointer Table in the appropriate
Tool Poinær Table.

(

input
input
input

t{F" TPTis notyel in RAÀif, t}ris tool copies the TpT roRAM.
(Memory for the TPT is obt¿ined from thê Memory lvfanager.) If
therc is not ørough room in the TpT for the new eätry, tnjfpf is
moved to a bigger chunk of mcmory. Likewise, the iVApI table is
gxpglded if necessary (memory forthe expansions is obtained from
the Memory Ìvfanager)- If the new poinærtable has any zero enries,
old entries a¡e moved from the old ioinær table o the riew poinær
table.

The call ca¡r be used to patch a portion of a Tool Set, rather than
rcplacing the Tool Set entirely. -

IPreliminary Notes 1/30/86

Description of tlr¿ ConlandTools: Part I

l\, GetFuncPtr Rea¡rns pointcr to the'specified fi¡nction in $e specified Tool Ser

input
input
outPut

TSNUm
FutuNwn
Poûtt¿T

V/ORD
\ilORD
POINTER

WORD
V/ORD
POINTER

GetWAP

SetWAP

Gets the pointer to the work a¡pa for the specified module.

input UseflrSystat WORDinput TSNum \¡fORDoutput Pointa FOINTER

Scts thE pointer to the wort a¡ea for thc specified module.

User0rSystatt
TSNl¿zt
Po¿rter

input
input
oulputo

L,

9

U
Prelíminary Notes 1/30/86

Descríption of tÌe Conlaa.dTools: Part I

Prelíminary Notes 10 1t30t86

{

Chapter 3

QuickDraw II
Overview
QuickDraw tr includes call_s fo-r manipulæing thç graphics environment and drarring
p:imitivc graphic objects. krcluded in the gnphicõ environment is i¡rformation aboüt:
drawing location, the coordinare system, andtlipping.

The primitive objects supported arc horizo¡!"I lines and pixet images. Additionaily,lines,
rcctangles, and rcgions are supporæd as higher-level graþhics objects. All higher-ievel
objects arc drawn using the lower-levet hoñzontal linés.-

The horizontal linedrawing routines draw with paftsrns. A pauern
organizcd.as_an 8x8 pixel sq93rc that can defi¡re-a rcpeating ilesign.
drawn, il is aligned so that adjaccnt arcas of the same patærn in tÍe
blerid with it into a continuous, coordinated pattcrn.

Basic Concepts and TermÍnology
A pixelmap is an areq of memory containing a graphic image (the analogous QuiclcDraw
tc.rm is Bitlmage). This image jq organÞed as a rec-ungularþd of dots ðaUe¿ picturc
elemenß, or pixels. Each pixel has an assigned value ór colór. The number of colors a
P5el may¡ave depends on its size or chunkiness. Two sizes a¡e possible: four-color and
sixæcn'color. Exactl.y ryhic!¡ coloç qlp inæ the various pixel valùes is deærmined by a
color table, as dcscribed under Color Table laær in this chapær.

Pixel size in the display is contolled independently for each scan line. Each scan line has a
scan line control byæ (SCB) which deærmines the scan line's properties. See Appendix B
for more details.

Pi*.þ arc frequently thought of as points in the Caræsian coordinate sysrem, with each
pixe-t-æ¡igned a horizontai and vertÍcal coordinate. Following the QuiôkDraw standard as
established for the Macintosh, the coordinate grid falls betweén, rather than on pixels. (See
Figurc 1.) Each pixel is associated with the point that is above and to the left of it.

Descríptionof thc ConlandTools: Pan I

is a 64-pixel image'When a pattern is
same graphics port will

Prelimirzary Notes 11 It30/86

Descriptíon of the ConlattdTools: Pan I

0
I
2

3

4
5

6

7

I

Figure I
Pixels, Points and Rectangles

01234 5 67 8

The rcctangle is defined by
the points (2,1) and (7,7).

It encloses 30 pixels.

A pixei

+ APoint

fl n Rectangte

Thjs scheme allows a rcctangle to divide pixels into ¡vo classes: those that fall within ttre
rcctangle and those which fall ouside the rectangie.

A pixel map need not be the a¡ea of memory associatcd with the graphics screen.
QuickDraw II can treat other memory as pliet ¡nap memory and ãraw into it as easily as
into the scr€en memory.

Drawing can be done in coordinate.s appropriate ûothe data being used- Data is mapped
F,
oqtuling sp¿rce.û" È. pixel-map âccorãing o lhe informatioä kept in noo r""tair'gtes;

the lounds Recungle @oundsRect) arid the Port Rectangle €ortReðÐ. Figure 2 ilñstrates
the Bounds and Port Rectangles

Prelirninary Notes 12 1/30/86

-.

Description of tlr¿ Conla¡dTools: Pan I

Figure 2. The Bouads a¡rd Pon Rectangles

Pixel Irnage
(Sc¡een or
othcr
ildemory)

E Active PortRcct (intèrsection of the BoundsRect
and PortRect)

The Bor¡¡rdsRect is a rcctangle that encompasses the entire pixel map. The upper left corner
of tbe BoundsRect is the point ttræ is abovè and to the left óf tne firdt pixel itilrt. pi*ri *ãp.
The PortRect is a rcctangle that describes the "active" rËgion of the pixel map. The
inænection of these twqrectangles is-rtre oniy glaçe qq*pirplt in th; pixel rÅap witt change(ignoring the visRgn and clipRgn, discusseã in ttre following paragräphs).

.E

A SetOrigin gall .loyt you to change both these rtcøngles. Thei¡ points rcmain in the
same rciative locatio¡ but the upper lèft corner (the origin) of the PortRect is set to the point
passed by Setorigin.

Drawing is the process by which pixglg a¡e altered in a pixel map. You may imagine a pen
drawing the image by placing dots of the ap'propriaæ color at eaôh pixel thai falls-under its
parh.

Por"tqgtJ* clipped whcn instn¡ctions ûo draw in inactive parts of the drawing space are
iflgry9.^.Forexample,,t'yoo_tæ chpping to a rectangle ¿efinø by (100,100) ää
(?8,1W) 19g I ûy to draw a line fóm (Õ,0) to (1000-,1000), onty-thè pixels ihat falt inside
the (100,100) through (200,200) range are affecæd.

QuickÐraw t[also provides {orglipgine o arbitary regìons. Drawings are clipped to the
intcrsection of nvo rcgions: tle C-lipRgn (a user-maintained clipping region) and the
VisRgn (a system-maintained clipping rcgion). This clipping wortõ oñthe'Cortland in the
same nunner as'it docs on the Macintosh-

ffi

Prelíminary Notes 13 I/30/86

e'
Descríption of thc ConlandTools: Pan I

Slabs and Slices
Ctrapryc.s objçts are drawn one scan line at a time. For objeca drawn with patærns, the
part of þ objecl drawn on a scan line is

"
"qþb". For_objects drawn from ôther pixel

m¿lps, tbc part of the object drawn on a scan line is a "Slicè". The ¡outines that draw slabs
and slices can be accessed outside the ROM.

The Drawing Environment
The.drawing environmerit is a set of nrles that explain how drawing actions behave. The
envi¡orrment includes i¡rformation about wh9rc diawing will occurlwhat part of memory,
in chunkiness), in what.coordinate sysæm, how it will-bc clipped, ùe peå staæ, the foni'
stste,.pq gonp poinær information. The various parts of the dmwing ênvironment arc
describcd in this section.

(Drawing Location
QuickDraw II allows drat"ing anywherc in mgmor.y. The most common location may be
the super hi-res screen: but a pixcl map.anywhere in memory and of almost any size ís
acceptable as long as the entire dcstination pixel map is in a iingte bank-

PortSCB - Flag to indicate chur¡kiness of pixel map and master coior paletæ.

Poinær to the pixel map - Points ro the first byæ in the pixel map.

v/idth - Number of byæs in a row of pixels (euickDraw ærm is RowByæs).

BoundsRect- Rectalgle that describcs the extcnt of ttre pixel map and imposes a
coordinate sysæm on it.

PortRect - Recungle that describes the active arca of Data spac€.

Pen State

QuickDraw tr maintains3 Eraphics pen (position andsize). Its position is used for drawing
tcxt, and its size is used for deærmining the size of a frame. Quict¿raw II does two kinds -.
oJdrafnS; normal drawing and grzsryg. In normal drawing,-the destination pixel map
depends on whæit wqq-to ¡tart-yith, thé original fill panernõrpixel image anã the drawing
mode. Erasing just fills the affecæd pixelswith the backgrouid pattern-.

Pen Location - A point in d¡ta space.

Pen Size - A point describing the width and height of the pen.

Pattern Transfer Mode - One of the eight tansfer modes supported by the
Primitives. This mode is used when drawing horizontal lines with thefill pattern.

;

PreliminaryNotes 14 I/30t86

Fill Patærn -. T.he fill patæ:n is-used when drawing horizontal lines. When any
routine uses the horizontal line drawing routine ûo õaw an object" ttre object wiil
appear in this patt€rn.

Background Patæm - The background pattern is used when erasing horizontal
lincs. 'When any ryu+g erases liorizoni¿l lines in the shape of an dLject, that
object will appear in ttris patrern.

Pen Modes
There.T ?ig.ht differerit pelmode¡. These modes arc used to derive the color of a pixel
Yhqn lt il-U"yg. d¡awn t9. -Each.pirel is.made up of a series of bis. The pen operates on
the individuai bits in a pixel as single units. kr tliis way logical binary o'pciztioris a¡e well
defined.

The following Pcn modes a¡e available. (Each I and 0 is the value of a bit in a pixel.)

Mode 0 (pencopy) Copy p€n to destination. This is the typical drawing mode.

Descríption of the ConJa¡dTools: Pan I

1

Overlay (OR) pcn and destination. You can use this mode to
nondestn¡ctively overlay new images on top of existing
unages.

I Penlol

Pen
1

Exclusive or (XOR) pen with destination. You can use this
mode for cursor drawing and rubber-banding. If an image is
drawn in penXOR mode, the appearancc of the destinatión at
the image location ca¡r be restored merely by drawing the
image again in pEnXOR mode.

pencopy
Pen
0

Dest.

Mode I (penOR)

penOR

0
1

0
0

1

I

Þest.

Mode 2 (penXOR)

p€nxOR

0
1

1

1

0
I

0

Dest. 0
1

0110

Preliminary Notes 15 I/30/86

e
Dæcription of ût¿ ConlandTools: part I

Mode 3 (penBIC)

penBIC

Dest

?it 9"T QIç) pen with dcstination ((NOT pen) AND
destination). -You can use this modc iò explièid erase (turn
off) pixels, often prior to overlaying anotlier mgé--
I Penlol

00l00
1

l:_f:-[:ylg modes a¡e inverses of the above modes; that is, the pen color is invertedpnor to performing the associatcd operation.

Mode 4 (notpencopy) peri to destination. You can use this mode to
unages.

notpenCOPY 0

Copy inveræd
d¡aw inveræd

Pen
1(

(

Dest.

Mode 5 (notpenOR)

notpenoR

Þest.

notpenXOR

Desr

Mode 7 (notpenBlC)

notpenBic

0
1

0
1

I
1

I
1

0
0

Qyerlay (OR) inverted pen with destination. you can use
this mode to overlay invertcd images.

I Penlol
0
1

Mode 6 (notpenxOR) Exclusive or (XOR) inverted pen with destination. This
mode behaves similady to peñXOR mode.

Pen
0 1

0
1

1001

Pit Irq @Iç) inverted p€{r with destination (pen At{D
$estinatign). tou ca¡r usè this mode to display the
inæncction of ¡rro images.

Pen
0 I

Dest. 0
I

0010

I

PrelíminaryNotes t6 1/30/86

Ðescription of thc Conla¡tdTools: Pan I

Ctipping
As statcd earlier, a drawing may be clipped to a variety of rcctangles a¡d rcgions

GrafProcs and GrafPort
QuictDraw,Il'slocal Environment includes clipping information, handles to pictures,
legions, and polygons, as well as a poinær to the GrafProcs rccord. The GräfProcs record
hofds polntc.T o all the standard drawing functions. A programmer Í1zy change the
pointers in this recød and cause QuiclDraw II to use a-différcnt dra*ing ¡outiie.

An enti¡e drawing environment is kept in a single rccord (catled the GrafPort), which can
be saved and restored with a -si4gle cail. This allows for simple conrext switching. The
progamrner has two ways of changing the drawing environment First, he or shé can
change the contenß of the GrafPort directly and have these changes ap'ply to the drawing
environment without m¿king pyothg calls. Or, he or she can rise sóirè of the many cáls
to set the individual fields in the GrafPort.

Data Structures

Pointer
P 4 byæs

Point

Rect

v
H

V1
H1
v2
Í12

2 byæs
2 bytes

2 byæs
2 bytes
2 bytes
2 byæs

String

An_SCB_Byte
Bits Mearúng

Color Table
Reserved
Fill0=off l=on
Intemrpt0=off1=oû
Color Mode 0=320 1=640

Standard PToDOS string starting with a length byæ followed by up to 255
characten of data.

30-
4
5
6
7

Prelíminary Notes 17 It30t86

Desoíptionof tlre Conland,Tools: Pøt I
r\ Loclnfo

ttdasterSCB : ur_scb_byte
rcserved: bÍe
PointerToPixellnuge : pointer
Width: word
BoundsRect: tpct

o

nibble = 0..15
twobit = 0..3

Pattern
case mode of

mode320:

PenState
Pnlnc': point
PnSizc : point
PnlvfodÊ: inæger
PnPat: patærn

GrafPort. Portlnfo.: Locl¡rfo
PortRect: rect
BltPat: Pattern
Pnloc: Point
PnSÞe: Point
Pnlvlod€ : inæger
PnPat: paftern
PnVis: inæger
FontPtr: Pointcr
Tdace: Style
TxÌv{ode: inæger
TxSize: inæger
SpExna: inæger
FGColor inrcger
BGColor: integer

PicSave: pointcr
RgnSave: poinrer
PolySave : poinær
GrafProcs : pointcr

(packed array [0..63] of nibble);
modc640:

(packcd array [0..63J of nvobiÐ;

(_,

(.r-
Preliminary Notes I8 I/30/86

Descriptionof tlv Conlaad,Tools: Pan I

Hardware and the Drawing Environment
Jl: S,lP"tFi-Res Graphics ha¡dwa¡e can display 200 scan lines and Ír¿ny colon. Theföllowing for¡r features arc contoiled indepeniteritly foreach scan line:

Color Table One of 16FillMode On orOffhæmrpt On or OffColorMode 320 vs 6,40 pixels per scan line

The scan line control byæ (SCB) conüols these four fean¡¡es for each scan line. The lownibble of the SCB identifies the color table ûo be used for this r"- finJ. eiùli rcserve¿.Bit 5 of the SCB conrols fill mode: I is on, 0 is off. Bit 6 of O" SCg .õnttofr i"i.".,tpìi,if the bit is set then an inæmrpt witl be generated when the scan line is retrcsfrà. Bit 7 ofthe SCB controls the mode: 0 is 320, l-is 640.

76543210
M F R Color Table

Color Table
A color tablc is a table. of.16 2-b-yte çltries. The low nibble of the low byæ is the inænsityof the colo¡ blue. The high nibblê of the low byæ is the inænsity of theãoloi sr;en. Thelow nibble of t{re lish.byæ¡s the int¡nsiq g{ ti,r color rcd. rtró niãn-

"iUuiã-oii¡. hiÀh
-

þ|æ [not used. Pixels in 320 mode are ¿ uits wide and oelrnumã¡.ãptâåLton
identifies a color in the color t¿ble. Pixels in 640 modc rt" lUis *iã; ;ä rÈi; numericr-eprqentalo¡ idcntifies a color in a subset of the full color table. llt;fitJpi-rf in tft" Èyt.
Qiq 0 ur-d 1) ¡elects one of four colon in the table from o rhdgh t. Ëñ;;¿ pixãrÉ -
4t Þyæ (bits 2 and 3) selects one of four colors in the ta¡ioaoni¿ üñ;ñ ?.-'ihe third
Ptr||.$tJI| llit¡ 4.and 5-).selects one of four colon in ttt. tabr.-fr.;i trrough î1.-.lhe lourth_pixel in the b¡e (biß 6 and 7) selects one of four colors in the taUte aõm tZthrough 15.

__. HighByte_ IowBytcHigh I-ow High 'Low
Nibble Nibbte Ni6bte Nibble

Reserved Red Grecn Blue

Prelíminary Notes I9 lt30t86

(

t

Descríption oÍ tln ConlandTools: Part I

FiIl Mode
Whe¡¡ fill mode is active, the zeroth color in the colon table becomes inactive. A
a numeric value of zero sgrvF as_p placc holder, indicating that the pixel should
displayed as the same color last disþlayed

Scan Line Values

1000020000010000
Colon Shown

B B B B B S/S/WWV/ \¡/ B B B B B

Housekeeping Functions

QDBootlnit Iqi$li*r QuiclcDraw tr at boot time. The fi¡nction puß the address
of the cursor updaæ routine into the bank El vectori.

QDAplnit

Interrupts

þæ*tpF can be us+ lo synchronizc drawing with vertical blanking so pixels are not
changed .as they- are þ"ing dr- awn {a pixel is drawn once every 1/60 õf a Second). Inrem¡prs
can also bc used o change the color table beforc a screen is iompleæly drawn.'This will'.lloT 3 ptggrym to show morc than 256 colon on the scr€en at once ¡6ut at the cost of
servicing the intemrpt).

pixel with
be

toi$"li* Quickdraw II, sets the currcnt port !o the sundard port,
and clean thc screen.

input 7øoPagelac WORDinput MasterSCB 1VORDinput Maxwidth lilORD
input ProgronlD V/ORD

TÏte MasterSCB is used to set all SCB's in the super hi-res graphics
screen. MaxWídth is a number that tclls QuiclcDrãw tr the sLein
bytes of the largest pixel map that will be drawn to. This allows
QuickDraw II to allocaæ ceit¿in buffers itneeds only once and keep
tfem tlroughout the life of the application . ProgrøilD is the ID
QuickÞraw tr will use when getdng memory frõm the Memory
Manager. All memory is rcserved in ttre name of this IÐ.

\
Preliminary Notes n It30t86

Descríption of tle ConlandTools: Part I

- eDeuit

QDVersion

Frees up ariy buffen that w€rt allocated.

Rcturns the version of QuiclDraw tr.

ouÞut Yersíonhþ

Global Environment Calls

GetStandardSCB Returns a copy of thc standard SCB in the low byæ of the word.

output TIuStanàardSCB ï/ORD
This cor¡esponds to:

Meaning
Color Table 0
Resen¡ed
Fill off
Intcmrpt off
ColorMode =320

SetMasterSCB

Bia
0-3
4
5
6
7

rr¡/ORD

Master Color
0 0 0 Opposiæ of White
F00
0F0
00F
088
E08

(

t_

Sets thc master SCB to the specifre{ value (only tåe low.byæ is
used).

input AuSCB '1¡fORD

The master SCB is the global mode byte used throughout
QuickÐraw tr. The maiær SCB is usi:a Uy routines-like Initport to
de¡ide what sanda¡d vaiues should be pui into the Grafporr

GetMasterSCB Returns a copy of the master SCB (only the low byte is vaüd).

oulput AuSCB V/ORD

InitColorTable Ren¡rns a copy of the standard color table for the current mode.

input TùlePr POINTER

The entries are as follows for 320 mode:

Pixel Value
0
1

2
3
4
5

Name
Blzck
Red
Green
Blue
Teal
?'l

Preliminary Notes 21 1t30/86

r-
Descríptionof the ConlandTools: Part I

6
7I
9
l0
11
12
13
t4
15

OFF
F F F Oppositc of Black

Mastcr Color
0 0 0 Opposite of S/hite
F00
0F0
FFF

V/ORD
'ü/oRD
S/ORD

Brown
Dark Gray
Light Gray
Orznge
???
n?
Yellow
Mageata

066
55s
AAA
F80
8F8
F88
FFO
FOF

Cyan
\¡fhite

The entries aæ as follows for 640 mode:

SetColorTable Sets a color table to specified values.

input Túlel,lwtúer WORDinput TablePr POINTER

Tablentæb¿r identifies the table to be set !o the values specified in
FgqÞlrfoTted !o. The 16 color tables arc stored starting at
$9E00. Each table takes $20 bytes. Each word in ttre tabie
represents one of 4O96 colors. The high nibbte of the high byte is
ignored.

input TableÌ,lmber 'WORDinput TableP¡ POINTER

Tablenumber specifies the number of the color table whose contcnts
are to be copied; TablePtrpi¡ts to the color t¿ble which is to receive
the contents.

Pixel Value
0
1

2
3

Name
Blåck
Red
Green
Blue

Tùlel,lwnber
EruryNwber
Value

GetColorTabte Fills a color table with the contenß of another color table.

(.

SetColorEntry sets the value of a color in a specified color table.

input
input
input

Tablenunber specifies the number of the color t¿ble; EntryNutnber
specifies the number of the color to be changed; Value sets the color.

Preliminary Notes 2, 1t30/86

-

Descríption of the ConJandTools: Part I

GetColorEntry Retums the value of a color in a specified color table .

input
input
ouÞut

Tùlel,lwnber
ErtryNutnber
Vahß

Scanün¿
Val¿ß

rü/oRD
rü/oRD
V/ORD

IWORD
WORD

SetSCB

GetSCB

SetAIISCBs

GrafPort Calls

OpenPort

InitPort

Scanlírc identifies the scan line whose SCB is to be set; Valu"e sets
the SCB.

Returns the value of a specified scan line control byæ (SCB).

input Scanlirc \¡/ORD
output Value V/ORD

Scanlh¿ identifies the scan line whose SCB is ûo be examined;
Value rcturns the value of ttre SCB.

Sets all scan line control byæs (SCBs) o a specified value.

input Value Í¡/ORD

Tablewtnber specifÏes the number of the color t¿ble; EntryNunùer
specifies the number of the color to be examined;Value réturns ttre
color.

Scts the scan line control byæ (SCB) to a specified value.

input
input

ïnitializes specified memo,ry locations as a ståridard port and
allocaæs new VisRgn and ClipRgn.

input PottPt LONG

Initializes specified memory locations as a srandâd port

mput PonPr I-ONG

InitPort, unlike OpenPort, assumes that the region handles a¡e
valid and does not allocate new handles. Otherwise, InitPort
performs the same functions.

(

Preliminary Notes 23 1130/86

Desc,riptionof tlv Conland,Tools: Part I
(- ClosePort

SetPort

GetPort

Deallocafes the memory associated with aporr

input PottPr I-ONG

All handles are disca¡ded If_the application disposes of the. memory
containing 4q p9n-t"ithour frnt câÍting Ctosepbrt, rhe memory
associatcd with the handles is lost and ðannot be claimed.

Nrlakes the specifred port the currerit porL

input PotP¡ I¡NG

Renrrns the handle to the curr€rit porl

output Po¡fr

input
input

I.ONG

Iü/ORD
IWORD

{

SetPortlnfo F"ts S" cuÍent port's map information sm¡ctu¡e to the specified
location i¡¡formation.

mput Lochþ I.ONC

setPortsize changes the size of the current Grafport's portRect.

input Width \¡/ORDinput Height V/ORD

This does not affect the pixel map, but just changes the active area of
the GraJPort. The call is normaily used by the V/indow Manager.

MovePortTo Changes the location of the cuûent GrafPort's portRect.

input Wídth IWORD
input Heiglx TWORD

This does not affect the pixel map, but just changes the active area of
the GrafPort. The catl is normally used by the Window Manager.

SetOrigÍn Adjusts the c-o:rtents of PortRect and BoundsRect so that the upper
left corner of PortRect is set to the specified point

H
v

VisRgn is also affected, but ClipRgn is not. The pen position does
not change.

PreliminaryNotes 24 1/30t86

l^. serclip

GetClip

CIipRect

{ Cursor-Handling Routines

SetCursor

GetCursorAdr

Description of tlre ConlandTools: Pan I

Sets the clip region ro the rcgion passed by using CopyRgn.

input RgnHandl¿ LONG

Returns a ha¡rdle to thc current clip rcgion.

ouþut RgnHandle LONG

ChrySgs the clip.region of the current GrafPort to a rcctangle
equivalent to a given recangle.

input Redtr LONG

This does not change the region handle, bur affects the region iself.

Sets the cursor o the image passed in the cu$or record.

input CwtorPt LONG

If the cunor is hidden, it rcmains hidden and appears in the new
forrn when it becomes visible again. If the curiör is visible, it
appears in the new form immediately.

Returns a pointer to thc current cußor record.

input CunorPtr LONG

Preliminary Notes 25 1t30t86

Desciption of the ConlandTools: Part I

f^' Hidecursor Decrcments the cursor level. A cr¡¡sor level of zero indicaæs the
cursor is visible; a cursor level less than zero indicates the cursor is
not visible.

ShowCursor Incrcments thc c¡¡rsor lcvel unless it is already zero. A cu¡sor level
of zcro indicaæs the cursor is visible; a cursoi level less tha¡ zero
indicates the c¡rrsor is not visible.

ObscureCursor Hides the cursor until the mouse moves. This tool is used to get the
cursor out of the way of typing.

Pen, Pattern, and Drawing Mode Calls

Dec¡ements 9. ryl level. A pen level of zero indicaæs drawing wilr
occur; a pen level less than zero indicaæs drawing will not occur.

Incremenß thepen level unless it is already zcro. A pen level of
zcro indicaæs that drawing will occur; a pen level lesi than zero
indicates drawing will nof occ¡r¡.

Returns the pen location.

output PointPr LONG

HidePen
(

ShowPen

GetPen

SetPenState

GetPenState

PenSize

PenMode

Sets the pen state in the GrafPort to the vaiues passed-

input PenStatcitr LONG

Returns the pen state from the GrafPort.

output PetßtatcPtr LONG

Sets the cur¡ent pen size to the specified pen size.

mput
input

Wídth
Heighr

LONG
LONG

Sets the curent pen mode !o the specified pen mode.

input PerMoù LONG

Prelíminary Notes 26 It30/86

a PenPar

Move

SetRect

mput
input

lnput
input

Draws a line from the curr€rit
by the horizontal and vertical ¡pn-location ro a new point specified

displacements.

Sets the curent pcri pattern to the specifred pen pattern.

mput PøanP¡ LONG

BackPat Sets the background pattern to the specifìed panern.

mput PømtPt LONG

PenNormal Scts the
= Copyi

penjtat€ 1o the standa¡d staæ (pensize = 1,1; penMode
PenPat = Black). The pen location is not.t-gø. ----

Descríption of tle ConlattdTools: Pan I

WORD
lilORD

lWORD
WORD

MoveTo Moves the currcnt pen location to the specified point.

Moles.t!9 current pen location by the specified horizontal andvenrcal cusPlacements.

H
v

dh
dv

dh
dv

Izfr
ToP
Right

input
input
input

LineTo Draws a line from the crurent pen location to the specified poinl

Line

mput WORD
V/ORD

Calculations With Rectangles
sets the recungle pointed to by Rectptr o the specified values.

mput ReaPtr LONG
IWORD
r$/oRD
TS/ORD
WORDmPut Boxom

input

PrelíminaryNotes T 1/30t86

Descriptionof the CònlandTools: part I

a OffsetRect Offseb the rectangle pointed ro by Rectk by the spccified
úsplacEments.

mput
input
input

tnput

outPut

lnput
input
ouÞut

SrcRectAPtr
SrcRectBPtr
DestRectPtr
Bælcan

SrcRectAPtr
SrcRectBPtr
DestReaPt
Boolean

PPr
RectPt
Boolea¡t

I.ONG
WORD
WORD

LONG
LONG
LONGrù/oRD

LONG
LONG
LONG
WORD

LONG
LONG
WORD

RectPt

InsetRect

{ ' SectRect

UnionRect

PtInRect

dv is added to the top and borom; dhís aÅded ro the left and righr

hr.!r the rectangle pointed to by Rectpr by the specified
cusptacements.

LONG
WORD
WORD

dt
dv

ReaPt
dh
dv

input
input
input

dv is added to the top and subtracæd from the bottom; dlr is added
ûo the left a¡rd subtracæd from the righr

Calculaæs the intersection of two recrångles and places the
inænection in a rhird rccangle.

If the result is non-empty, the ouÞut is TRUE; if the result is empty,
the ouçut is FALSE.

calculates the union of two rectangles and places the union in a third
recEngle.

input

input

input
input
input
outPut

If the result is non-empry, the ourput is TRIIE; if the result is empry,
the ouþut is FALSË.

Detects whether a specified point is in a specified rectangle.

For example, PtInRec((10,10)),((i0,10,20)) is TRTJE but
PtlnRect((20,20)),((10, 1 0,20)) is FALSE.

Prelíminary Notes 28 1/30t86

e Copies one point ûo the uppcr left of a specified rectangle and
another point o the lower right of the réctangle.

r,oNc
I.ONG
I.ONG

Description of tle Conland,Tools: Pan I

I,oNG
LONG
Iü/ORD

LONG
1WORD

Pt2Rect

mput
input
input

EqualRect Compares two rectangles and rcturns TRUE oTFALSE.

input
input
outPut

input
outpu

An empty
or the left

PtIPr
Pr2Pr
RectPt

RIPt
H,Ptr
Bæl¿an

ReaPtr
Bælean

EmptyRect Returns whether or not a specified rectangle is empty.

rcctangle has the top greater than or equal to the bottom,
greater than or equal O the right.

Rectangle Calls
FrameRect

PaintRect

EraseRect

InvertRect

FillRect

Draws the boundary of the specified rectangle with the current
pattern and pen size.

input ReaPr LONG

Only points entirely within the rectangle a¡e affected.

Paints (fills) the inærior of the specified recungle with tl¡e curenr
pen pattern.

input ReaPn LONG

Paints (fills) the inærior of the specified rectangle with the
background pattern.

input RectPtr LONG

Inverts the pixels in the inærior of the specified rectangie.

input RectPtr I¡NG
Pains (fills) the inærior of the specified rectangle with the specified
pattern.

input ReaPn LONGinput Pøsn LONG

Prelíminary Notes n 1/30t86

e
Descríption of tlu CortlattdTools: part I

Pixel Transfer Calls

ScrollRect

input
input
input
input

PaintPixels

$,ryfß the-¡1ygls ior_ld" the inænection of the specified rectangle,VisRgn, ClipRgn, PortRect, and BoundsReci

dh
dv

RectPoint¿r

UpdateRgn

POINTER
rü/oRD
WORD
HA¡TDLE

I.ONG

lhe pügl9 areshifæd a distance of dhhonzpnralty and, dv vertically.
The positiv-e {¡ectio1s.3rc.to ttre right and down.'No other þi;lr " '

arc affected Pixels shiftcd out of the scroll arcÂ.arelost. The
þptgo*¿ parym fills the space created by the scrou.

-tn
addition

UptuteRgn is changed to thè arca filled wíO Bactpit.

by ScrollRect.

The pixels arc transfer¡ed without referencing the cur¡ent Grafport.
The source and destination are described in tie input, .t ir ttt.
clipping rcgion.

Transfen a region of pixels.

input PaitttPøonpt

PairuParænPn is equal o the foltowing:

PtrToSourceloclfo
PtrToDestlochfo
PtrToSou¡ceRect
PtrToDestPoínt
Mde
Maskllandle (ClipRgn)

LONG
I-ONG
LONG
I¡NG
Tù/ORD
I.ONG

Calculations With Points

AddPt {dd¡ nvo specified poinß together and leaves the result in the
destination point

input SrcPtPt I-ONGinput DqtPtPtr LONG

Preliminary Notes fl I/30/86

a
Descríptionof tlu CodandTools: Pan I

I-ONG
I-ONG

SubPt

GIobalToLocal

subtracs the source¡rcint to- the destination point and leaves the
rcsult in the destinati,on point

input
input

input PPr LONG

I-ocal coordinates are based on the crurent BoundsRect of the
GrafPorr Global coordinaæs have 0,0 as the upper left corner of
the pixel image.

converts a point from global coordinates to local coordinates.

input PPr LONG

I-ocal coordinatcs arc based on the current BoundsRect of the
GrafPorr Globat coordinates have 0,0 as the upper reft corner of
the pixei image.

Calculations With Regions

NewRgn Allocaæs spqe þr a lew rcgion and initializes it to the empty
region. This is the only way ûo create a new region.

oulput Rgnllandle LONG

All other calls work with existing regions.

DisposeRgn Deallocates space for the specifred rcgion.

input Rgnllattdle LONG

SrcPtPt
DqtPtPtr

SetPt Sets a point o specified horizontal and vertical values.

LONG
\¡/ORD
\¡/ORD

EqualPt Returns a boolea¡r rcsult indicating whether two points are equal.

input PtIPt LONGinput Pt2Pr LONGoutput. Bælean V/ORD

LocalToGlobal Converts a point from local coordinates to global coordinates.

lnPut
input
input

SrcPtPtr
h
v

(

Preliminary Notes 31 1/30/86

Description of tlr¿ Conla¡tdTook: Pøt I

CopyRgn Copies the contcnb of a rcgion from one region to another.

input
input

If the regions arc not the same size to start with, the DesaRgn is
rcsized (DestRgn must already exist. This call does not aliocate it)

SetEmptyRgn þtroys the previous region information by sening it to the empry
reglon.

input Rgn HANDLE

The empty region is a recungular region with a bounding box of
(0,0,0,0). If the original region was not recungular, the region is
resized.

SetRectRgn Destroys the prcvious rcgion information by sening it to a rccungle
describcd by the input.

input
input
input
input
input

If the inputs do_not describe a valid rectangle, the region is set to the
gmpty region. If the original region was not rectangular, the region
is resized.

SrcRgn
DestRgn

Bonom

HANDLE
HANDLE

Rgn
Izfr
Top
Right

HAhiDt.E
WORD
V/ORD
WORD
WORD

RectRgn

OpenRgn

- Destroys the previous region information by setting if to a rectangle
described by the input.

input RgnHandl¿ LONGinput RectPtr LONG

If the input does not describe a valid rectangle, the region is set to
the empty rcgion. If the originai region was not rectangular, rhe
region is rcsized.

Tells QuicicDrzw tr to allocate temporary space and start saving lines
and framed shapes for later processing as a region def,rnition.

rWhile the region is cipen, ail calls to Line, LineTo, and the
procedures that draw framed shapes affect the outline of the region

PrelimiuryNores JZ 1/30t86

CIoseRgn

OffsetRgn

lnput

The rcgion retains its size and shape

InsetRgn Shrinks or expands a rcgion.

input
input
input

mput
input
input

SrcRgnA
SrcRgnB
DestRgn

Description of tlte Conland,Tools: Pan I

Tells QuickDraw II to stop processing information a¡d to return the
rcgion that has been c¡eàæd

input DestRgn I{Ab¡DLE

DestRgn.must already exist, and its conænts are replaced with the
new rcgion.

l"foyr. the region on the coordinaæ plane a distance of då
horizontally and dv vertically.

input

input

Rgn
dh
dv

HANDLE
WORD
WORD

LONG
V/ORD
WORD

HAI.IDLE
HANDLE
HANDLE

RgnHan¿le
dh
dv

4x points on the rcgion boundary a¡e moved inwa¡ds a disunce ofdv.verticaily anddh horizontally-. If dv or dh are negative, thepoilts are move4 outwards in that direction. Insetñ,gn léaves the
regiot"centered" on the same position, but moves thãoutline.
InsetRgn of a rectangular region wori<s just like InsetReìt.

SectRgn caiculaæs the intersection of wo rcgions and places the intersection
in the third rcgion.

The function does not allocate the thi¡d region. you must allocaæ
the thi¡d region before.the call to SectRgn.

If thg rcgiorls do not intersect, or one of the regions is empry, the
destination is set to the empty rcgion.

Prelíminary Nores 33 1/30/86

Descriptíon of the Cortl¿ndTools: Part I

UnionRgn calculaæs the r¡nion of ¡rro rcgions and places the union in the third
region.

The function does not allocatc the thi¡d rcgion.
the third rcgion before the call to UnionRgn.

You must allocaæ

If both regions are empty, the destination is set to the empty region.

Calculaæs the difference of two regions and places the difference in
the third region.

input
input
input

input
input
input

lnput
input
input

SrcRgrá
SrcRgrE
DestRgn

SrcRgnA
SrcRgr:E
DestRgn

I{AI.{DLE
}IAI.{DLE
HÄI{DLE

I{AI{DLE
}I.A¡{Di.E
I{A¡{DLE

HA¡TDLE
I{A}IDLE
HANDLE

POINTER
HA¡{ÐLE
WORD

Di ffR gn

XorRgn

PtInRgn

input PointPtrinput RgnHandle
output Boolean

The function does not allocate the third rcgion. You must atlocate
the third region beforc the call to DiffRgn

If the source rcgion is empty, the destination is set to the empty
reglon.

Calculates the difference benyeen the union and the inærsection of
two regions and places the result in the third region.

SrcRgr:,/.
SrcRgnB
DestRgn

The function does not allocate the ttrird region. You must allocaæ
the third region before the call to XorRgn.

If tfe regions are not coinciden! the destination is set to the empty
re$on.

Checks to see whether the pixel below and to the right of the point is
within the specified rcgion.

The function retums TRIIE if the pixel is within the region and
FALSE if it is nor

Prelímínary Notes g It30/86

a
Description of tlu ConlandTools: Pan I

Checks whether a givan recungle inænects a spccified rcgion.

input RectPtr POINTERinput RgnÍIandle HAò¡DI-Eoutput BØlean WORD

The function returns TRUE if ttre inænection e¡closes at least one
pixel or FALSE if it does no¿

Çoqpqryl the two regions a¡d retums TRITE if they are equal or
FALSE if not

input RgnI HANDLEinput RSn2 lt.llrDl.Eoutput Bool¿an V/ORD

The two rcgions must have identicai sizes, shapes and locations to
be considered equal. Any two empty rcgions are always equal.

EmptyRgn Checks to see if a rcgion is empty.

(.

RectInRgn

EqualRgn

FrameRgn

PaintRgn

EraseRgn

input
output

RgnIIanÅle
Bool¿att

LONG
WORD

Returns TRIJE if the region is empty or FALSE if nor

Graphic Operations on Region Calls

Draws the boundary of the specified region with the current pattern
and current pcn size-

input RgnHandle LONC

OnIy poina entirely inside the rcgion are affecæd-

If a rcgion is open and being formed, the outside outline of the
region being framed is added to that region's boundary.

Paints (fills) the intrior of the specified region with the cunenr pen
Pattern.

input RgnHardl^e I¡Nc

Fills the interior of the specified rcgion with the background pattern

input RgnHarúle I-ONG

Preliminary Notes 35 1t30/86

Description of the Cortland,Tools: part I

a InvertRgn

FillRgn

Inverß the pixels in the interior of the specified region.

input RgnHandle I-ONG

Fills ttre inærior of the specified rcgion with the specfied patrern.

mput RgnHandle
PøsnPr

V/ORD
WORD
WORD

input
I.ONG
I.ONG

Miscellaneous Utilities

Random Returns a pseudorandom number in the range -3zi6g to 32767.

output Intzga Iù/ORD

The numberrctumed is generated based upon calcuiations
pcrformed o¡ seedval¿¿¿, which can be iet with setRandseed
The result for any particular seed value is always the same.

SetRandseed Sets the seed value for the random number generator.

mput SædValu¿ rü/oRD

GetPixel Returns the pixel below a¡d to the right of the specifed poinr

loputmput
input

Th¿Píxel is rcturned in the lower bits of the word. If the cu¡rent
drawing location has a chunkiness of 2, then 2 bits of the word arevalid. If the current drawing location has a chunkiness of 4, then 4
biu of the word arc valid-

There is no guarantee that the point actually belongs to the port.

h
v
ThzPíxel

(

L
Prelírninary Notes 36 1/30/86

Descríptionof thc ContandTools: Pan I

Chapter 4

Memory Manager
Overview
The Memory Manager on the cortland is rcsponsible for allocating
prograqrs. The Manager dç¡ the bookkeeping of what memory iitack of who owns various blocks of memory.

Properties of Memory Blocks
|'lemory btocks have ataibuæs that deærmine how they a¡e allocaæd and maintained.
Some attributes a¡e defined at allocation time and can'íbe changed-

-Otü
u1û;butes can bemodified after allocation.

Allocation Attributes
When a block is ailocated, an attribute byte is specified that determines how the block isallocaæd This type of attribute can only be sef when the block is altocaæ¿ The attribuæsare as follows:

. Movable

. Fixed Add¡ess

. Fixed Ba¡k

. Bank Boundary Limired

. Special Memory Useable

. Page Aligned

These attributes are explained in this section.

Movable

blocks of memory to
being used and keeps

If a block is movable, it can be moved when compaggng memory. Code btocks wiil rarely
be movable but dat¿ blocks should usually be moiabie.-

Fixed Address

This attributç specifies that the block must be at a specified add¡ess when allocaæd. An
example is allocating the gnphics screen.

Preliminary Notes 17 1t30t86

(-

Descriptionof tle CortlandTools: Part I

Fixed Banli

This attibuç.specifies that the block must start in a specified bank An example is
ailocating a block o be used as a zero page.

Bank Boundary Limited

This anributg specifies that a block must not cross banls. Code blocks, for examplê, Dy
never cross banks.

Special Memory Useable

This attribute. qpeçifies that the block may be allocated in special memory. This is memory
that was uscd in the Apple tre. It includes banks 0 and t ân¿ ttre video icreens.

Page Aligned

For timing l€asons, code or dau may need to be page aligned.

Modifiable Attributes
The memory runager can move or purge a block while making room for a new biock.
There are attribuæs that deærmine whether a block can be movãd or purged; these anributes
can be moved or purged. The aUributes are as foilows:

. I-ocked

. Purgel-evel

i

'When a block is locked, it is unmovable and unpurgeable regardless of the setting of
Mo.veable gr.Prugel-evel. This-concept allows ã bloct to be-æmporariiy locked ðown
while it is being executed or rcfercnced

PurgeLevel

RrrgeT evel is a two-bit number defining the purge prioriry of a block. 0 means the block
cannot be purged; 3 means the block will be the fint purled.

Housekeeping Functions

Locked

MMInit
MMStartUp

MMShutDown

Called at boot time.

hitializes the Memory lvfanager

Releases æsources.

Preliminary Notes 38 I/30/86

(MMVersion

DisposHandle

Memory Allocating Functions

NewHandle Creaæs a ne!¡/ block.

Descríption of the Conland,Tools: pan I

Returns the version of the Memory Manager.

output Versionlr{o WORD

þPutmput
input
input
outPut

BloclcSíze
Owns
Attributes
Location
Hødle

TlEHandle
BloclcSíze
Ovvna
Attributes
Iacadon
Han¿le

(

Bloclcsize is thc size of the block to create.

ReAllocHandte Reallocates a block that was purged.

mPut
input
input
input
input
output

Bloclcsize is the size of the block to $eate.

Memory Freeing Functions

Purges a specified unlocked block and deallocates the handle.

input T\uHarldl¿ HA|IDLE
The block must be unlocked, but is pu¡ged regardless of its purge
level.

DisposAll Disca¡ds all of the handles for a specific owner.

input Owner HAI{DLE

Prelímínøry Notes 39 1/30t86

Descríptíon of tltc Conli¿ndTools: Part I

l- PurgeHandle Rrges a specified r¡¡rlocked block, but docs not deallocate the
handle.

input TlEHandle HANDLE

The block must be un]çked,.but is purged rcgard.less of its purge
level. ThcHandle iself rcmains allocated butls poinær to l.tTL.-

Purges all of the pr.rgeable blocks for a specific owner.

input Ows HAI{DLE

Block Information Functions

GetHandleSize Returns the size of a block.

input Tluflandleoutput Size

PurgeAll

HLock

mput
output

I-ocation
TlEHan¿le

TIAbTDLE
LONG

HAT.{DLE
LONG

SetHandleSize Changes the size of a block.

input TheHandle FIAIIDLEinput NaçSize LONG

The block can be made larger or smaller. If more room is needed to
lengthen a block, memory may be compacted or blocks may be
purged.

FindHandle Retums the handle of the block containing a specified address.

Notc that, if the block is not locke{ it may move.

Locking and Unlocking Functions

Locks a block specified by a handle.

input Theflanàle HANDLE

A locked block cannot be relocated during memory compaction

PrelíminaryNotes û I/30t86

- HlockAll

HUnLock

HUnLockAll

Purge Level Functions

SetPurge

SetPurgeAll

Free Space Functions

FreeMem

MaxBlock

Descríptionof tlv CortlatdTools: Pan I

I-ocks all of the blocls owned by an owner.

input Owns

Unlocks a block specifÏed by a handle.

input TIEHandle I{A¡IDLE

A unlocked block can be rclocated during memory compaction.

Unlocts all of the blocks owned by an owner

input Owns

Sets the purge level of a block specified by a handle.

input TluúaÌ1¿le HAIIDI-Einput NevyPl-æel

Sets the purge level of all blocks owned by a specifîed owner

input O,^,nø HANDLEinput NeutPlevel

Renrrns the total number of free byæs in memory.

ouÞut Size LONG

FreeMem compacts rnemory space. The function does not count
memory that car¡ be freed by purging; it might not be possible
ftecause of memory fragmentation) to allocate a block that large.

Returns the size of the largest free block in memory.

output Síze LONG

This function does not count memory that ca¡r be freed by pr:rging
or compacting.

Prelíminnry Notes 41 1/30/86

Descríption of the CortlandTook: Part I

Prelimínary Notes 42 I/30/86

e'

Description oîtlr¿ Cortland,Tools: Part I

Chapter 5

Event Manager

Overview
The Event Manager allows applications to monitor the user's actions, iuch as those
involving the mouse, leyboard, an{ kgypad- The Event Manager is also used by other
Paqs of the Toolbox; for instance, the V/indow Manager uses events to coordinaæ the
ordqtng aqd dispiay of windows on the screcri. Therc are actually two Event Managers:
one in the Operating Syst€m and one in the Toolbox.

The Operating System Event Manager detects low-level, hardwa¡e-rclated events such as
moúsc button presses and keystrokes. It stores information about these events in the event
queue and provides routines that access the queue.

The Operating System Event Ìvlanager also allows an application to
. post its own evenß into the event queue
. remove events f¡om the event queue

' set the system event mask, to confol which types of events get posted into the queue

The Toolbox Event lvfanager calls the Opemting System Event Manager to retrieve events
from the event qu1ue.-In ad_dition, it reports window and switch eveñß, which arcn't kept
in the qu€ue. The.Toolbox Evcnt Manager is the application's link to its.user. A t)?ical'
rveq¡drilen application de¡ides what to do from móment to momerrr by asking thä
Tooibox Event Manager for evenb and rcsponding to them one by one-in whalever way is
appropriaæ.

The Toolbox Event Manager also allows an application to
. restrict some of the routines to apply only to certain event types
. dircctly read the cr¡r¡ent staûe of the mouse bunon
. monitor ttre location of the mouse

þ eenegt, events are collected from a variety of sources and reporæd to the application on
demand, one at a time. Events aren't necessarily reporæd in the order they ocèirrre¿
because some have a higher priority than others.

Note: h the remainder of this document" OSEM denotcs the Operating Sysæm
Event Manager andTBEM denotes the Toolbox Event Managei.

Prelimirøry Notes 43 It30/86

Descríptíonof tlrc ConlandTools: Pan I

Event Types
Events are of various typ€s. Somc report actions by the user; othen are generated by thetü/indow Manager, the Control Manager, devicê drivers, or the applicatiõn itself forits own
purposes. Some events arc handled by the system before the application ever sees them;
others are left for the application to handle. The eve¡t types a¡e-as follows:

Mouse Events
Pressing the mouse button generates a mouse-down event; releasing the button
generates a mouse-up event. Movements of the mouse cause the cursor position to be
updaæd but a¡e not reportcd as events. V/henever an event is posæd, the location of the
mouse at that time is rcporæd in a field of the event record. The application can obtain the
crurent mouse position if needed by calling the TBEM routine GeMouse. Because relative
pointing i"vices-such as joysticks must also be supporæd, the Event Manager differentiates
between bunon 0 and button 1.

Keyboard Events
The character keys on the keyboard and keypad

Shift, Caps
generate key-down events when

pressed; this includes all keys except I-ock, Control, and Open-Apple,
which a¡e cailed modiher keys. Modifier keys are teared and generaæ no
keyboard events of their own. Whenever an eveît is posted, the state of the modif,rer keys
is reported in a field of the event record.

The cha¡acter keys o¡ the keyboard and keypad also generate auto.key events when
held down. Two different time interr¡als arc ássociated with auûo-key events. The first
aup;ke¡ event is generaæd afær a certain initial delay has elapsed sincc tåe key was
originally pressed; this is called the delay to repeal Subsequènt auto-key evaits are then
generated each time a certain repeat inænal has eiapsed since the last suðh event; this is
called the repeat specd. The user can change these values with the Contol Panel.

Window Events
The Vr'indow Manager genemtes evelts to coordinate the display of windows on the
screen. Activate events arc generated whenever an inactivè window becomes active or
an active window becomes inactive. They generally occur in pain (that is, one window is
deactivaæd and then another is activaæd).

Update events occur when all or part of a window's contents need to be drawn or
redtawn, usually as a result of the user opening, closing, activating, or moving a window

Other Events
A device driver event may be generated by device drivers in certain situations; for
example, a driver might be set up !o reÞort an event when its tansmission of data is
þærypæ¿ Dcvice driver events are placed in the event queue with the OSEM procedure
PostEvent.

Prelíminary Notes 4 1t30/86

I

Description of tle ConlandTools: Part I

An application c¿rn define as nurny as four application events of its own and use them
$gy d"t$ purpose. Application{efined evcnts are placcd in the event queue with the
OSEM procedure PostEvEnL

A switch event is gencrated by the Conhol Nt[anager whenever a buttondown event has
occr¡rrcd on the swirch control-

,û¡

A desk agc-essgll -evgnt is generated whenever the user entcrs the special keystoke to
invoke a "classic" desk accessory (currcntly CONTROL-OPEN APpLE-Esc¿Þg).

A null event is rcn¡rned'by the Event Manager if it has no other events to reporl

Event Priority
Events a¡e rctieved. from the event que-ue in the order they were originally posæd-
However, the way that various types of events arc generaied and deiected cãuses some
gveqts to have higher prioqty than others. Alsg, not all events arc kept in the event queue.
Furthermore, when an app_licatio-n asks the TBEM for an evenE it can-specify particuiar
þ49s that-are-of inFrcst. Specrfying such events can cause some evenis to Éapassed over
in favor of others that werc acnrally posæd later.

t. TBEì"f-qlwa.ys rcqulns the highest-priority event available of the requested typcs. The
priority ranking is as foilows:

l. Activaæ (window becoming inactive before window becoming active).
2. Swiæh.
3. Mouse-down, mollsg-up, key-down, auto-key, device drive¡, application-defined,

desk accessory (all in FIFO order).
4. Update (in front-to-back order of windows).

Activate events take priority over all others; they'rc deæcæd in a special way, and are never
actually plaged in the eveot queue. The TBEM checks for pending activate êvents before
looking in the event queue, so it will always rctum such an- event-if one is available.
Because of the special way activate everits are detected, there can never be more than trvo
such events pend¡1rg at the same time; at most there will be one for a window becoming
inactive followed by another for a window becoming active.

Nextin priority a¡e switch events, which arc generated by the Control Manager a¡d are also
not placed inthq event queua If no activate events are pending, the TBEM ðhecia for a
swiæh event before looking in the event queue. If a swiæh evðnt is available, the TBEM
then checks to see if -I update events arc pending, and if so, it rchrms the updaæ event ro
the application. The swiæh evert is not rcnrned to the application until thergare no
pending update e.vents. This is to ensure ttrat all of the n'iñdows are updated before the
application is swiæhed-

Çaægory 3 includes most of the event types. Within this category, events a¡e rctrieved
from the queue in ttre order they were posted.

Next in pnority are update events. Like activate and swiæh events, these a¡e not placed in
the event queue, but arc deæcæd in another way. If no higher-priority evenr is available,

Prelíminary Notes 45 il30/86

{

Descríption of tlr¿ Conland,Tools: Part I

the TBEM checks for windows whose contcnß need to be drawn. If it finds one, it returns
Tt updaæ event for that window. Windows a¡e checked in the qrdcr in which they'rc
displayed on the scrËen, from front to back, so if two or mote windows need to béu$ate{ an updaæ event will bc rcturned for the frontmost such window.

Finally, if no other event is available, the TBEM rch¡rns a null evenl

Note: - If the gleue shoutd become full, thc OSEM wilt begin discarding old events
to make for new ones as they're posted. The events ãiscarded arJalways the
oldest ones in the queue.

Event Records
EJtry event is represenæd internally by an event record containing all pertinent information
about that evenl The event rccord includes the following informationi

. the typc of event

. the time the event was postcd (in ticls since sysæm starnrp)

. the location of the mouse at the timc the event was posæd (in global coordinaæs)

. the st¿te of the mouse buttons and modifier keys at the timc ttre event wæ posted

' any additional t¡form3$o.n rçqqircd for a particular type of event, such as which key
the user prcssed or which window is being activaæd -

Every event, including null events, has an event record containing this information.

Event rccords are defined as follows:

The when field contains the numbe¡ of ticks since the system last started up, and the where
field gives the location of the mouse, in globat coordinâtes, at the time the èvent was
posted. The other th¡ec fields are described in the following sections.

what
message
when
where
modifiers

INTEGER
LONGINT
LONGINT
Point
INTEGER

{event code}
{event message}
{ticks since starrup}
{mouse location}
{modifier flags}

Prelíminary Notes 6 I/30/86

Description of tlre ConlandTools: Pan I

Event Code
The what field of an eveût rccord contains an event code identifying the type of the evenL
The event codcs are assigned as follows:

0 - null event
I - mouse down event
2 - mouse up event
3 - key down event
4 - undefined
5 - auto-key event
6 - updaæ event
7 - undefined
I - activate event
9 - swiæh event

10 - desk accessory event
11 - device driver event
12 - applicationdefined event' 13 - applicationdefrned event
14 - applicationdefined event
15 - applicationdefined event

Event Message

Thc message field of an event rccord contains the Event message, which conveys additional
information about the event. The nature of this information depends on the evènt type, as
shown in the following table.

Event type
Key-down
Auto-key
Activale
Updaæ
Mousedown
Mouse-up
Þevice driver
Application
Swiæh
Desk Accessory
Null

Event message
ASCtr cha¡acær code in low-order bytc
ASCII characæ¡ code in low-order byæ
Poinær o window
Pointer to window
Button number (0 or 1) in low-order word
Button number (0 or 1) in low-ordcr word
Defined by the device d¡iver
Defined by the application
Undefined
Undefined
Undefined

Modifier Flags

The modifiers field of an event record contains fr¡rther information about activate evenß
and the staæ of ttre modiFrEr keys and mouse buttons at the time the event was poste{ as
shown below. The application might look at this field to find out, for instance, whether the
OPEN-APPI*E key was down when a mousedown event was posted (which could affect

Preltminary Notes 47 1t30/86

Descríptionof tle CortlandTools: Part I

the ryaygbjecß are selecæd) or when a kcydown event was postcd (which could mean the
user is choosing a menu iæm by typing its keyboard equivalent).

15 14 13 t2 11 10 9 8 7 6 5 4 3 2 1 0

The ActiveFlag and ChangeFl,ag bis give further information about activate evenß. The
Ac$v_eF1ag bit is set to 1 if the window pointed to by the everit message is being acrivated,
or 0 if the window is being dcactivaæd. The ChangeFlag bit is set to I if the aCtive
window is changing from an application window to a system window or vice versa.
Otherwise, it's set to 0. The KeyPad bit gives further information about keydown events;
it's set to I if the key pressed was on the keypad, or 0 if the key pressed was on the
lc_eyboard. Thgær_n{ning bit! indicate the staæ of the mouse button a¡rd modifrer keys.
Noæ that the Btn0State and BtnlStaæ bits are set to I if the corrcsponding mouse button is
up,wheteas the bits for the five modifier keys are set to I if their c-orrespõnding keys are
down.

KeyPad ChangeFlag
Controll(ev ÀctÍveF1ag

OptionKey
CapsLock

ShiftKey
ÀppleKey

Btn0State
BtnlSt,ate

Event Masks
Some of the TBEM and OSEM routines can be rcstrictcd to operate on a specific event type
or group of types; in other words, the specified cvent types are enabled while all othen àre
disabled For instance, instead of just rcquesting the next availabie evenL the ap,plication
can specifically ask for the ncxt keyba¡d event.

An application can specrfy which event t)?es a particular call ap'plies to by supplying an
event mask as a parameter. This is an integer in which there's one bit position for each
event type, as shown below. The bit position rcprcsenting a given type corresponds to the
event code for ttrat type-for example, updaæ evens (event code 6) are specified by bit 6
of the mask. A 1 in bit 6 means that this call applies to update evEnts; a 0 means that it
doesn't.

Preliminary Notes Æ 1t30/86

15 14 13 t2 11 10 9 I 1 6 5 4 3 2 1 o

Ðescríption of the ConlandTools: Part I

Update Key-down Mouse-downSwitch

Desk Activate
Accessory

Device
driver

Àut,o-key Mouse-up

Event-driven applications have a main loop that repeaædly calls GetNextEvent þ retrieve
the next availaþlç even! a¡rd thEn takes whaæver action is âppropriate for each fype of
evenL Some typical responses to commonly occurring evens are described in tLè ncxt
se€tion. The program is expectcd to rcspond only to those events that arc directiy æiated to
its own operations. Afær calling GetNêxtEveni, it should tcst the Boolean rcsutt to find
out whether it necds qo_rcspond to the event: TRUE means the event rnay bc of inærest to
the application; FALSE usually means it will nor be of inærcsr

In some cases, the application may_simply_yanl¡o look at a pending event while leaving it
available for subsequent rctrieval by GetNextEvent. It can do this with the EventAiail
function.

Responding to Mouse Events

Çn-receiving a mousedown event, an application should frnt call the Window Manager o
find out wherE o,n the screen the moussbutton was pressed, and then rcspond in whitever
Yay is lpprgpriaæ. Depcnding on the pah of the scrcen in which the buiton was pressed,
the application rury have to call Toolbox routines in the Menu Ìvfanager, the Desk Manager,
the Y/indow Manager, or the Contol Manager.

Prelíminary Notes 49 1/30186

Àpplication
defined

Note: Null events can't be disabled; a null evEnt will always be rcported when none
of the enabled qçes of evenß arc available.

There's also a global system event mask that controls which event tyDes set Dosted into
the event qucue by thg OqEÌ"f. OnIy event typ€s coresponding to biti iet iñ thè sysæm
event t-n¿* are posqd; all others arc ignorcd. S/hen thè systcm stårts up, the sysæm event
mask is set to post all events.

Using the Event Managers
If an applicati_on will be using the Event Managers and the V/indow Manager, it must
initialize the Event Managers before initializing the tü/indow Manager. TËe TBEM and
OSEM ¿¡p initiali2sd by calling the TBEM routine EMStartUp. Bãcause the TBEM needs
to sha¡e data with the-V/indow Manager, they must both use the same zero-page work a¡ea.'When the Window lvfanager is initialized, it must call the TBEM routine DõWindows to
obtain the address olthe zßrùpage work a¡ea that has been assigned to the Event
Managers. If DoTVindows is not called, the TBEM will assurñe that windows a¡e nor
being used and will not attempt to rËturn window events.

Description of tlu CortlandTools: Part I

If the application attåches some special significance to pressing a modifrerkey along wittr
the mouse button, it can discover the state of that modifier key when the mouse button was
down by examining the appropriate flag in the modifien field of the event rccord.

If the application wishcs to respond to mouse double-clicks, it will have to dctect them
ieelf. It can do so by comparing the time and location of a mouse-up event with those of
the immediæely following mousedown evenL It should assume a double-cück has
occr¡rred if both of the following aæ tnre:

. The times of the mouse-up event and the mouse-down ev€nt differ by a number of
ticls less than or equal to the value rcarrned by the TBEM function GetDblTime.

. The locations of the two mousedown cvents sçarated by the mouse-up evEnt are
suffrciently close to each other. Exactly what this means depcnds on thè particular
application. For instance, in a word-processing application, two locations might be
considered essentially the same if they fall on thc same character, whereas in a
graphics applicæion they might be coni¡idcred essentially the same if the sum of the
horizontal and vertical changes in position is no morc than five pixels.

Mouse-up events rnay be significant in other ways; for example, they might signal the end
of dragging to select more than one objecr Most simple ap'plications, however, will ignore
mouse-uP events.

g

Responding to Keyboard Events
For a key-down event" the application shouid first check the modifien field to see whether
the cha¡acær was typed with the Open-Apple key held down; if so, the user rnay have been
choosing a menu iæm by typing its keyboard equivalenr

If ttre keydown event \¡/as not a menu command, thc application should then rcspond to
the event in whatever way is appropriate. For example, if one of the windows is active, it
might want to insert the t¡rped cha¡acter into the active document; if none of the windows is
active, it might warit to ignore the event.

Usually the ap'plication can handle auto-key events the same way as key-down events. You
may, however, v/ant it o ignore auto-key events that invoke commands that shouldn't be
re¡¡i¡uelty rcpeaæd

Responding to lVindow Events
V/hen the application receives an activate event for one of its own windows, the tñ/indow
Manager will already have done all of the normal "housekeeping" associaæd with the event"
such as hightighting or unhighlighting the window. The application can then take any
ñ¡rther action that it may require, such as showing or hiding a scroll bar or highlighting or
unhighlighting a selection.

On rcceiving an update event for one of its own windows, the application should usually
updaæ the contents of the window.

Prelíminary Notes fl It30/86

Description of tle Cõrtlan¿Tools: Part I

Responding to Other Events
An application will never receive a dcsk accesso'ry event bccause these a¡e inærcepæd and
haridled by the Desk À,fanager.

If the application receives a swiæh evcrrt, it should call a (currently unnamed) routine in ttre
Swiæher that will save the curent søte ¿¡1d swiæh fo the next application.

Posting and Removing Events

If an application is using applicationdefined events, it will need to cail the OSEM function
PostEvent to post them into the event queue. Device driven can post events the same way.
This function is sometimes also useful forre,posting events that have been rcmoved f¡om
the event queue with GetNextEvent.

In some siû¡ations, you may rtafit your application !o rcmove from the event queue some or
all events of a certain type or types. It can do this with the OSEM procedure
FlushEvents.

Other Operations
In addition to receiving the user's mouse and keyboard actions in tåe form of events,
ap'plications can directly fÊad the mouse location and state of the mouse buÉons by calling
the TBEM routines GetMouse and Button, respectively. To follow the mouse when the
us€r moves it with the button down, the application can use the TBEM routines
StillDown or WaitMouseUp.

Finally, the TBEM function GetCaretTime ¡etums the numbe¡ of ticks between blinks of
the "caret" (usually a vertical bar) marking the insertion point in editable texl An
application shouid call GetCaretTime if it is causing the caret to blink itself. The
application would check this value each time thróugh the main evcnt loop o ensuÍe a
constant frequency of blinking.

Applications should neve¡ call the TBEM routines Do'Windows and SetSwitch, a¡d will
probably never call the OSEM routines GetOSEvent, OSEventAvail, SetEventMask;
and GetEvQHdr.

The Journaling Mechanism
The Event Manager has a joumaling mechanism that can be accessed through assembly
language. The joumaling mechanism "decouples" the Event Manager from the user and
feeds it events from a file that contains a rccording of all the events that occurrcd during
some portion of a user's session. Specifically, this file is a rccording of all calls o the
TBEM routines GetNextEvent, EventAvail, GetMouse, and Button. 'V/hen a
joumal is being recorde{ every call to any of these routines is sent to a journaling device
driver, which records the call (and the resulß of the catl) in a file. V/hen the journal is
played back, these rccorded TBEM calls a¡e taken from the joumal file a¡rd sent di¡ectly to
the TBEM. The result is that the recorded sequence of user-generated evenß is reproduced
wheri the journal is played back.

Preliminary Notes 51 1/30/86

Descríption of tlte Conl¿nd-Tools: Part I

: The journaling mechanism ruy not be supportcd in the first release due to
contraints.

Note
time

Housekeeping Functions

EMBootInÍt Called at boor time. Does nothing.

EMStartUp hitializes the Toolbox and Operating Sysæm Event Managen.

input
input
input
input
input
input

QrcrcSize specifies the ma,rimum number of event rccords the
queue can hold. ü QwrcSize is equal to zero, a default size of ??
will be used The Clamp inpua spe.cfy the minimum and
Ír¿udmum X and Y clamps for thsmouse.

EMShutDown Turns off the Toolbox and Operating System Event Managen.

EMVersion Ren¡rns the venion of the Toolbox and Operating System Event
Managen.

output Versionlnfo IS/ORD

DolVindows

furoPageAdrs
QwrcSize
XMinClonp
XMaxClamp
YMínClønp
YMaxcbtrp

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

Returns the address of the zerùpage work area used by the Toolbox
and Operating Sysæm Event Managers.

output kroPageAtlrs INTEGER

Preliminary Notes 52 1t30t86

Description of tle ConlandTools: Part I

Accessing Events Through the Toolbox Event
Manager

GetNextEvent Returns the next available event of a specified type or types an{ if
the cvent is in the event queue, ¡emoves it from the queue.

input
input
output

EventMask
EveruPr
Bælu¡t

INTEGER
POINTER to EventRecord
\ilORD

if
desk

The eve¡rt is ren¡med in the evEnt record pointed to by EventPn.
EventMask spccifies which event types are of inærest.

GetNextEvent rcrurns the next available event of any type
designated by the mask, subject to the following priority-ôrder:

1. Activaæ (window becoming inactive before window becoming
active).

2. Swirch.

3. Mouse-down, mouse-up, key-down, auto-key, device driver,
. application-defl¡red, desk accessory, all in FIFO order.

4. Updaæ (in front-to-back order of windows).

I{ ng, eveq of any of the designated types is available,
GetNextEvent returns a null evenl This priority order is further
discussed tî " ?????'!???" .

Events in thp queue that aren't designated in the mask arc left in the
queue. The events can be rcmoved by calling the FlushEvents
tool.

Before reporting an event to the application, GetNextEvent fint
calls the Desk Manager tool SystemEvent to see whether the
system wants to intercept and respond to the evenl If so, or if the
event being rcported is a null event, GetNextEvent returns a
Booleanrcsult of FALSE; aBooleanresuit of TRIIE means that the
application should handle the event itself. The Desk Manager
inærcepts the following evenß:
. desk accessory cvents
. activaæ and ugdaæ events dtected o a desk accessory
. mouse-up and keyboard events, if the currently active window

belongs to a desk accessory

In each case, the event is intercepted by the Desk Manager only
the desk ¿rccessory can handle that type of event. As a rule, all
acccssories should be set up to handle activate, update, and
keyboard events and should not handle mouse-up events.

Preliminøry Notes 53 It30/86

Descríptíonof the ConlandTools: Part I

EventAvail

mput
input
output

Reading the Mouse
GetMouse

Button

input
outPut

StillDown
input
outPut

GetltlertEvent also handles the Alarm Clock desk accessory. If
the "alarm" is set and the current time is the alarm time, thc alãrm
gocs off. The user can set the aiarm with the Alarm Clock desk
accessory.

This tool works the same way as GetNextEvent, except that
EventAvail leaves the event in the event queue (if the event was
therc in the fintplace).

An event returnêd by EventAvail cannot be accessed if, in the
meantime, the queue becomes full and the event is discarded.
However, because the oldest events a¡e the ones disca¡ded, usefui
€vents will be disca¡ded oniy in an unusually busy envi¡onmenL

EventMask
EventPt
Bælean

BunotNunt
Boolean.

BuxorNum
Boolean

INTEGER
POINTER to EventRecord
1VORD

INTEGER
WORD

INTEGER
WORD

Returns the current mouse location.

outPut MouseLocPtr POINTER o a Point

The location is given in the local coordinatc system of the currerrt
GrafPort (for example, the currently active window). This differs
from the mouse location stored in the "where" field of ân event
rccord; that location is always in global coordinaæs.

Returns the cu¡rent state of.the mouse button.

BunorNum contains the number (0 or 1) of the mouse button to
check. Boolean returns TRIIE if the mouse button is currently
down, or FALSE if it isn't.

Tests whether the mouse bunon is still down.

BunorNun contains the number (0 or 1) of the mouse button to
check. Boolean returns. TRUE if the mouse button is currently
down and ttrse are no morË mouse events pending in the event
queue. Usuaily called after a mouse-down event, StillDown is a
tnre tcst of whether the mouse button is still down from the original
press. (Button is not a tn¡e test, because it returns TRUE

Preliminary Notes v 1/30t86

Description of tle ConJandTools: Part I

whenever the mouse button is currently down, evcri if the button
was rcleased and prcssed again since the original mouse-down
evenL)

Tcss whether the mouse buton is still down, and, if the button is
not still down from the original press, ¡emoves the preceding
mouse-up event before renrrning FALSE.

WaitMouseUp

SetSwitch

input
output

ButtoNunt
Bæl¿an

INTEGER
r$/oRD

ButtorNun contains the number (0 or l) of the mouse button to
check. Boolean rcturns TRIIE if the mouse button is currcntly
down and there arc no mor€ mouse events pending in the evcnt
queue.

WaitMouseUp could be used, for example, if an application
aüached some special significance to mouse doubleilicks and to
mouse-up events. IVaitMouseUp would allow the application to
recognize a doublc<lick without being confused by thèintcnening
mouse-uP.

Miscellaneous Toolbox Event Manager Routines

GetDblTime Renrrns the suggested maximum difference (in ticks) betwecn
mouse-up and mousedown events in order for the mouse clicks to
be considercd a double click.

output MaxTícks LONGINT

The user can adjust this value by using the Control Panel.

Returns the time (in ticks) between blinks of the "caæt" (usually a
vertical bar) marking the insertion point in æxt

ouÞut NumTicks ISNGINT
If an application is not using TextEdit" the application must cause the
cÍìrÊt to blifrk On every pass through the program's main event
loop, the application should check Nwffícks against the elapsed
time since the last blink of the ca¡et .

The user can adjust this value by using the Contol Panel.

Informs the Toolbox Event Manager of a pending switch event.
SetSwitch is called by the Control Manager and should not be
called by an application.

GetCaretTime

Preliminary Notes 55 I/30t86

Descriptionof tlre Cortland,Tools: Part I

e Posting and Removing Events
PostEvent Places an event in the event queue

input EventCd¿input EventMsgouÞut Resub

INTEGER
I"ONGINT
INÏEGER

INTEGER
Srrrcen
INTEGER

EvetuMask
StopMask
Result

EveruCodc designaæs ttre type of event o be placed in the queue.
EventMsg specifies the event message, with the crurent statè of the
modifier keys and mouse buttons supptiø in the high-order word of
the message. In addition, the currenïtime and mouse location is
rccorded in the message.

Resuk reû¡rns a result code equal to one of the following values:

0 - no error (event posted)
1 - event type not designaæd in sysæm evert mæk

An application must be ca¡eful when it poss any events other tha¡r
its own application{cfined events into ihe queue. Atæmpting to
post + qctivatc or-updap gven! (which a¡rn-'r normally pùceã in the
guegg), for example, will interferc with the normal oftration of tle
Toolbox Event ìvfanager.

If PostEvent is used to repost an event, the event time, mouse
location, staæ of the modifier keys, and state of the mouse buttons
will all be changed from the originally posted everrl This can alær
the meaning of the event.

Removes even6 from the event queue.FlushEvents

input
input
output

EveuMask specifies the type or fypes of the events to be removed
from the gleug. FlushEvents removes all events of the type or
typesspecifi4 op to but not including the first event of any type
s¡æcified by StopMask To remove all events specified by
EventMask, specify 0 as the value of StopMasL.

If th_" event qu€u! doesn't contain any event of the types specifîed
by EventMast, FlushEvents does irothing.

\ilhen the tool finishes, Result contains 0 if all events were removed
from the gueue, or an event code specifying the type of event that
caused the process to stop.

PreliminaryNotes % 1/30/86

Description of tlr¿ ConlandTools: Pan I

Accessing Events Through the OS Event Manager

GetOSEvent Returns the next available event of a spccified type or t]"€s and, if
thc event is in the event queue, lemoves it from the queue.

lhe eyent is rcurned in the event rccord pointed toby EventPtr.
EventMask spccifies which event types are of inærest

GetOSEvent rctuÍis the next availaþ¡s event of
designated by the mask, subject to thc following

input
input
input

mput
input
ouÞut

EventMask
EventPt
Bæban

EvewMask
EventPt
Bælcan

INTEGER
POINTER ûoEventRecord
WORD

any type
priority order:

INTEGER
POINTER o EventRecordlùioRD

(

1. Activaæ (window becoming inactive beforc window becoming
active).

2. Swiæh.

3. Mouse-down, mouse-up, key-down, auto-key, device driver,
applicationdefined, dcsk accessory, all in FIFO orde¡.

4. Update (in front-to-back order of windows).

I{ ng,eve41 of any of the designated types is available,
GetNextEvent returns a null event an¿ a Boolean of FALSE;
otherwise Boolean is TRUE. This priority order is furttrer
discussed tn " ??'!??????".

Ever¡ß in the queue that arcn't designated in the mask arc left in ttre
queue. The events can be rcmoved by calling the FlushEvents
tool.

This tool works the same \¡/ay as GetOSEvent, except that
OSEventAvail lcaves the event i¡ the event queue (if the event
was therc in the first place).

OSEventAvail

An event returned by OSEventAvail cannot be accessed if, in the
meantime, the queue becomes full and the event is disca¡ded.
However, because the oldest cvents a¡e the ones disca¡ded, useful
everits wül be discarded only in an unusually busy environmenl

Prelíminary Notes 57 I/30/86

Description of tlrc Conland,Tools: Part I

e Miscellaneous os Event Manager Routines

SetEventMask Sets the system event mask o the spccified event mask. ,

input INTEGER

The Operating System Event Manager will post only those event
t¡pes that correspond to bits set in the masli. It wili not post
activatc, updaæ, or switch evenß, because those events årc not
stored in the event queue.

The-sysæm e-vent mask is initially set to post all events. A¡r
application should not change ttre sysæni event mask, because desk
acccssories may depend upon rccciving certain types of events.

(

GetEvQHdr Reh¡ms a poinær to the header of the event queue.

output QHùPr POINTER

Prelíminary Notes 58 1/30/86

(

Descriptbnof tlrc Conland,Tools: Part I

Chapter 6

Other ROM Tools

SANE
The ROM Tools for the Cortland witl provide all of the functions found in the Standa¡d
4pple N¡meric Environment (SANE). The SAI.{E Tools can be called using the normal
Corttand call mechanisnr-

The SAI\{E Tools for the Cortland work in the same îurnner as they do in othe¡ Apple
environments, except for minor differencæ in ttre halt mechanisrn- For more infon¡ation
rcgarding tl¡at mechanism, refer ûo the Conlandsá¡lE Tool Set Preliminary No¡es. For
more information regarding the capabilities of SAÌ.ÍE, rcfer to the Apple Nuncrics Matanl.

Desk Manager
No information available at this time.

Sound Manager
No information available at this time.

Preliminary Notes 59 1t30/86

Descríption of tln Conl¿nd,Tools: Part I

Prelíminary Notes û 1t30t86

Descríptionof tlre ConlardTools: Pan I

Chapter 7

Miscellaneous ROM Tools

Overview
There are a number of tools that do not fall easily ino one logical caþgory. We have
grouped them under the name of "Miscellaneous ROM Tools". Those tools a¡e expiained
in this chapær.

The cror codes for the miscellaneous tools ¿r€ as follows:
$0000 No Error
$0001 BadlnputPa¡ameær
$0002 No Device for Input Parameter

Housekeeping Functions
PowerUplnit Called at boot time. Initializes HeartBeat inæmrpt chain link poinær

to $00000000.

Does nothing.

Does nothing.

Ren¡rns the version of the miscellaneous tools.

ouÞut Versíonlnfo V/ORD

Math Functions

Multiply Multiplies two 16-bit inpuß and produces a 32-bit result.

input ResuhSpæe I¡NGinput MI WORDinput ÌuA ÌWORD
output Result LONG

If the inputs were unsigned, the 32-bit Resuh is unsigned. If the
Tpots werc signed, the low word of the 32-bit Result indicates the
slgn.

StartUp

ShutDown

Version

Prelirninary Notes 61 It30/86

Descriptionof thc ConlatúTools: Part I

e sDivide

LongDivide

FixRatio

Divides two lGbit inpus and produces two lGbit signed results.

ResuhSpace
Nurnsator
Dercminøoroutput QrctientouÞut Raruinb

input
input
input

I,ONG
WORD
WORD
I¡NG
I,ONG

I,ONG
IWORD
WORD
I-ONG
I-ONG

UDivide' Ðivides two lGbit inputs and produces two lGbit unsigned results.

ResultSpace
Nutmerator
Denoninator
Quotùnt
Rûnaind¿r

LongMul

lnput
input
input
output
output

lnput
input
input
input
output
output

input
input
input
output
output

Multþlies ¡vo 32-bit inputs and produces a 64-bit rcsull
input ResuttSpace LONGinput Resuhspæe LONCinput MI LONGinput ìn I-ONGoutput Resuk I-ONGouÞut Resuh I¡NG

If thr inputs were unsigned, the 64-bit Result is unsigned.
inputs were signed, the low two words of the 64-bit É.esuk
the sign.

Þivides two 32-bit inputs and produces rwo 32-bit unsigned resulrs.

ResuhSpace
ResuhSpace
Nunsatar
Denominator
Quotient
Rsnaind¿r

LONG
LONG
LONG
I-ONG
LONG
LONG

If the
indicate

Takes nvo signed inæger inputs and produces a two-rilord fxed-
point number as a ratio of the numerätor and denominator.

ResultSpace I,ONGNutm*ator LONGDercminator LONG
Result (least significant) LONG
Resalr(most significanÐ LONG

I

Prelíminary Notes 62 1/30/86

a FixMut

FracMul

FixDiv

FracDiv

(FixRound

FracSqrt

FracCos

FracSine

FixATan2

HiWord

(LoWord

Lon92Fix

Fix2Long

Fix2Frac

Frac2Fix

Fix2X

Descríption of tlrc ConlandTools: Pan I

Muþlies nvo fixed-point inputs and produccs a two-word fued-
point rcsult.

input ResultSpace LONGinput MI LONGinput IyA I¡NGoulput Resuh(leastsignificant) I-ONGoutput rResu/r(most significanÐ I-ONC

Multiplies two Frac inputs and produces a Frac rcsull

Dividcs nvo fixed-point inputs and produces a fixed-point result.

Divides two Frac inputs and produces a Frac rcsulf

Takes a fixed-point input and produces a rounded integer resull

Takes a Frac input and produces a Frac square root.

Takes a Frac input and produces its cosine.

Takes a Frac input and produces its sine.

Takes tyro inputs and produces a fixed point arc tangent of thei¡
ration. The inputs can be long integer, foed, or Frãc.

Returns high word of inpur

Returns low word of input.

Converß long inæger to fixed.

Convern fixed to long integer.

Converts fxed to Frac.

Converts Frac to fxed.

Converts fued to exænded.

63 I/30t86Prelíminary Notes

Description of tlte Conla¡úTools: Part I

(

e Frac2x Converts Frac to extended

X2Fix Converb extcnded to fxed.

X2Frac Converts extc¡rded to Frac.

Battery RAM Functions

IilriteBRam

ReadBRam

$08
$0c
$0D
$0E
$0F
$10
$11
$12
$13
$14
$15
$16

Port2 Printer¡lvfodem
Port2 Line l-ength
Port2 deleæ if afær cr
Port2 add lf after c¡
Port2 Echo
Port2 Buffer
Port2 Baud
Port2 Data Bits
Port2 Stop Bits
Port2 Parity
Port2 DCD Handshake
Display Color/lvf onoc hrome

Wrires 256 byæs of data from a specified add¡ess to the battery
RAM.

input BuferAddress LONG

Reads-256 byæs of data from the batæry RAtvf and transfers it ro a
specified address.

input BuferAddress I-ONG

YVriteBParam Y/riæs data to a specified param.etcr in banery RAÀ,I.

input M Iñ/ORD
input ParønRef ÌWORD

ParamRefis from 0-255, and is defined as below for
ReadBParam.'

ReadBParam Reads one byæ of data from banery RAI,I at a specified parameær
addrcss.

input Parøt&ef \MORDoutput fu V/ORD

PararnRefis f¡om 0-255, and is defined as follows:

Preliminøry Notes & l/30/86

Descríption of tlæ Cortland,Tools: Pan I

$17
$18
$19
$1A
$lB
$1C
$lD
$lE
$lF
$20
$21
$22
$23
s24
s2s
$26
827
$28
$29
$2A
$28
$2C
$2D
$2E
$2F
$30
$31
$32
$33
$34-35
$36-37
$38-39
$3A42
$43-54
s5s-7F
$80

Ðisplay 4Ol80 Column
50/æl1z
Display Text Color
Display Background Color
Display Border Color
User Volume
Bell Volume
Systcm Spc€d
Slotl InærnalÆxternal
Slot2 krærnalÆxternal
SloB hærnalÆxtemal
Slot4 krærnalÆxtsrnal
5lot5 krternalÆxternal
Slot6 hæmalÆxternal
SlotT kræmalÆxtemal
Startup Slot
Tcxt Display I^anguage
Keyboard knguage
Keyboard Buffering
Keyboard Rçeat Speed
Keyboard Repeat Delay
Double ClickTime
Flash Raæ
Shift Caps/Lower Case
Fast SpaceiDeleæ Keys
Dual Spe€d
High Mouse Resolution
Month/DayNeax Format
24/am-pmFormat
Minimum Ram for RAlvfÞISK
lvfaximum Ram for RAÀ,ÍDISK
Frce space for RAIvIDISK
Number of I-anguages
Number of I-ayouts
Reserved
AppleTalk node number

PreliminaryNotes 65 1t30/86

Descriptian oÍtlte CortlandTools: Part I

Clock Routines
These routines allow the clock to be set orread. Seting the clock requires that the time be
passed as an input parameter in a hex forma¿

Two tools ary Provided for rcading the clock- One rcturns time in a hex formaq the other
retums time in an ASCtr forma¿ -

ReadTimeHex Retums current time in Hex format

ResuhSpace
ResuhSpæe
ResuhSpace
YølDay
MonthlSeconàs
MiruuelHour

WriteTimeHex Scts clock to time specifred in Hex format

input
input
input
output
outPut
output

Min¿selHow
MonthlSeconds
YørlDay
Staa¿s

WORD
WORD
IWORD
rü/oRD
ÌWORD
WORD

WORD
V/ORD
IWORD
V/ORD

mput
input

Bit 6,15
Bir5
Bit4
Bit 3
Bit2
Bit 1

Bit0

lnput
input

Sr¿r¡¿s indicaæs which par¿rmeters have changed, as follows:

Reserved
I if Year not changed
I if Dav not chansed
1 if Mõnth not chãnged
I ifSecondnotchanged
1 if Minuæ not changed
1 if Hournot changed

ReadASCIITime Reads elapsed time since 00:00:00, January 1, 1904, converts thed"n* $prlp ASCtr time ouþuq and piúes rhe ouþut in a
specified buffer.

input BuferAdÅress S/ORD

The ASCtr time is n HH:MM:SS rwnldàtyy format, where:

IIH HourMM MinuteSS SecondrTtn Monthü Day
W Year

The ASCtr string has the high bit clea¡ed.

Preliminary Notes 6 1/30/86

Descríption of tlu Conland Tools : P ut I

Text Routines
The routines specified below t¡lk to any card that suppors Pascal entry poins.

WriteChar Combines a charactcr with the global A¡{D mask and global OR
mask, and then writes the cha¡acær to the Pascal device specified by
the global slot number.

Input Chøøs \IYORD

Writeline Combines a character string with the global AIID mask and global
OR mask, and then wriæs the string to the Pascal device specified
by the global slot ni¡mbcr. A carriage r€turn and line feed are
concatcnated to the string.

Input StríngPt LONG

The fint b¡e of ttre cha¡acær string specifies the length of the
string.

lVriteString Combines a cha¡acter sting with the global AND mask and global
OR mask, and then wriæs the string to the Pascal device sperifîed
by the global slot number.

krput StringPt LONG

The first byæ of the characær string specifies the largth of the
string.

VÍriteText Combines tcxt from a specified location (poinær + offset) with the
global AIID mask and global OR mask, and then wriæs the string to
the Pascal device specified by the global slot number.

krput
krput
krput

TæPr I,ONG
WORD
IWORD

\ilriteCString

TatPtr + Affset specifies the memory location of the start of the
string; Count spccifies the length of the string.

Combines a character string ærminating with the value $00 with the
global AIID mask and global OR mask, and then writes the string to
the Pascal device specified by the global slot number.

Input CStríngPtr I-ONG

Prelíminary Notes 67 1/30t86

Descríption of the CortlandTools: Part I

ReadChar Reads a character from the Pascal device specified by the global slot
number, combines the characær with the global AòID mask and
global OR mask, and rcturns that combinãtion as a result

Input RæultSpaceOuput Cfsaas

ResuhSpace
Poínter
Øsa
MaxBloclcSíze
CItøsReceived

ResultSpace
Bt$erPointer
MaxBloclcSize
EOLClwactø
ChøsReceíved

V/ORD
V/ORD

Tü/ORD
I¡NGrs/oRD
\¡/ORD
WORD

Iü/ORD
LONG
IWORD
WORD
lrfoRÞ

ReadBlock

ReadLine

InitPDev

ControlPDev

StatusPDev

Reads a block of cha¡acters from the PæcaI device specifred by the
global sloJ numbcr, combines the cha¡acæn with ttre global AIIID
mask and global OR mask" and wriæs the block to a specified
memory location.

krput
Input
Input
krput
Ouput

Pointer + Affset specifies the starting memory location to wriæ to.

Reads a character string ærminating in an EOL characær from the
Pascal device specified by the global slot number, combines the
characte¡s with the global AIID mask and global OR mask, and
wriæs the string to a specified memory locãtion.

Input
ktput
Input
Input
Ouçut

(

BufferPoinrer specifies the buffer o write to.

Initiaiizes the Pæcal device.

Input ResuhSpace WORD

Initializes the Pæcal device.

Input ConnolCd¿ WORD

Makes the status call to the Pascai device.

Input RequzstCode \MORD

(*_ Preliminary Notes I I/30/86

Descrþtbn of tlu ConJandTools: Pan I

I SetlnGlobats Scts ttre global pÍ¡rameþrs for the input dcvice.

Input
Input
Input

setoutGlobals sets the global paramcteñi for the output device.

Input
Input
krpu!

GetlnGlobals Returns ttre giobal p¡rr:rmeters for the input device.

Input
Input
Input
Ouçut
Ouçut
Ouçut

GetoutGlobals Returns the global parameters for the output device.

ResultSpace
ResultSpace
ResuhSpæe

AdMask
OtMask
SloNu,tnber

AndMask
OtMask
SloNwrber

AnàMask
OrMask
SloNunber

ResultSpace
ResuhSpace
ResuhSpace
AndMask
OtMask
SloNumber

\ilORD
WORD
\¡/ORD

WORD
WORD
TWORD

WORD
V/ORD
V/ORD
\ilORD
WORD
WORD

krput
Input
Input
Ouçut
Ouçut
Ouçut

ltrORD
'WORDTWORD
IWORD
WORD
Iù/ORD

Prelíminary Notes e I/30/86

Descríptíonof tlre Cortla,túTools: Part I

Vector Initialization Routines
These routines allow thc application to set or get the current vector for the intemrpt
handlers.

SetVector Sets the vector add¡ess for the inæmrpt rurnager or handler specifred
by the vectorrefercnce number.

Input
Input

VeaorRefl,lwùer WORDAddress I¡NG

('

GetVector

VectorRefl,lwnben are given below, under GetVector.

Returns the vector address for the inæmrpt rrumager or handier
specified by the vector rcference numbe¡.

ktput ResultSpace WORDInput VectorRefltlunber \ffORD
krput Ad.d¡ess LONG

V ectorR efl,l umbelr ¿tre as follows :

$00 Tool I-ocator #1$01 Tool l-ocator #2$02 User's Tool l-ocator #1$03 User's Tool Locator #2$04 Inæmrpt Manager$05 COP Manager$06 Systcm Death lla¡rdler$07 AppleTalk InæmrptHandlerS08 Serial Corn Controlle¡ Intgmrpt Handler$09 Scan Line Intcmrpt Handler$04 Sound Intem¡ptHandler$08 Vertical Bianking Inæmrpt llandler$0C Mouse Intemrpt Handler$!D Q¡rartcrSecondlntcmrptHandier$0E Keyboard Intemrpt Handler$0F FDB Response Byæ Inæmrpt Ha¡rdler$10 FDB SRQ Inæmrpt Handlei$11 Desk Accessory Manager$12 Flush Buffer Handler$13 Key Micro Intemrpt Handle¡$14 One Second Inæmrpt Handler$15 EXT VGC Intcmrpt Handler$16 Other Unspecified Intemrpt Handle¡$17 Cursor Update Handler
$18-FF krvalid

PreliminaryNotes n 1/30/86

a'
Description of tle ConlandTools: Pan I

HeartBeat Interrupt Queue
Thesc tools allow a vector o be installed or rcmoved from the HeartBeat Inæmrpt service
queue.

SetHeartBeat

HEAR'TBEAT

TASKCNT

START

¡l

4,0
$nnnn
$A55A*
#nnnn
TASKCNT

J.ink ûo next tåsk
;# \IBL's until senrice
;Signanre word
;task starts herc
;task must rËset count

¡15 rlls the ask spccified by the pointer into the HeartBeat Internrpt
sel:\4ce queue.

Input Pobw I¡NG
You must¡recedc the !!k with a long word poinær which the tool
uses to link o the next Hea¡tBeat inæmrpt service task; a word
pantmeter for a count which is used by tlie handler ûo keep track of
howmany \IBL occurcnces remain beforc service is rcndered; and a
word parameær containing a signatr:re value used to verify the
presence-of th9 tç_k header. The r¿sk shouid end by cxeðuting an
RTL back o the He¿rtBeat Intemrpt handler. Wheir this call is-
made, the tool ¿ìssumes that the heartbeat intemrpt ha¡rdler witl be
!¡sed, and i¡5tnlls the Hea¡tBeat intemrpt handlei into the VBL
intemrpt vector. An example is as follows:

EQU
DS
DW
DW
EQU
LDA
STA

RTL ;back ro handler

The count word and link long wo¡d a¡e initialized by the tool. The
count word is decrcmenæd Uy the HeartBeat inæmrpt handler, and
is re^set by the task. when a task is installed in the HeartBeat'chain,
the four bytes rcserved for the link will be loaded with a $0000.
The foru bytes rcserved for the link in the procedure iust prcvious to
the procedurc currently being installed will Uc toa¿ed witli ttre
add¡ess of $e procedurc currcntly being installed. count specifies
how many hea¡tbeats rcmain before service is rcndered to a'
procedure.

You can install ROM-based he¡rtbeat tasks, but to do so you must
permanently allocaæ twelve byæs of RAlvl O the taslc The task
header must be loaded into RAlvl, followed by a JMP instn¡ction
and the address of the ROM-based task as shown below:

Preliminzry Notes 7t 1t3A/86

(^

Descríption of tla Cor-tlandTools: Part I

HEAR'TBEAT

TASKCNT

START

ROMTASK EQU
LDA
STA

DelHeartBeat

EQU *
DS 4,0 tr ink to next taskDW $nnnn ;# \IBL's until serviceDW $.{554 ;Signature wordEQU * ;t¿sk starts hereJMP >ROMTASK ;jump ro mm based task

The RoM-based task still has the responsibility of rcsening the task
countgr.

ClrHeartBeat

HBptt
HBptt
HBPE
HBptr

RTL

J
+7 SIGNATURE(m$)
+6 SIGÌ{ATIIREQsb)
+5 CNTR (msb)

¡t

#nnnn
TASKC}IT

+7
+ó
+5
+4
+3
+2
+l

;task must rcset count

RTL ;back to handler

Deleæs the task specifled by the link address from the Hea¡tBeat
Inæmrpt service queue.

krput Poinur I¡NG
Erron that may occur when making tool calls to set or delete
hea¡tbeat tasks a¡e as follows:

Error Code Descriptions

$0003
$0004
$0005
$0006

Iæk already installed in heartbeat queue.
No signature in task header.
Queue has bcen damaged.
Task was not found in queue.

Clea¡s the HeartBeatlnterrupt service queue.

HeartBeat Oueue

+4 CNTR

RTLRrL +tlI codc
J +? SIGNATURflmsb)

ffiffif il ffiffi*'m,s;^ :i Hf:lä
Hr,H?)iHä:lä
m,r<ìJtí/ Iat I:nL in ctøin

+3 LINK
+2 UNK (brar)
+l LINK (¡drh)(b¡nk)

(¡d¡h)
(rdrl)

nPrelírninary Notes

LINK

1/30/86

Description oî tlu Conland Tools : P art I

System Death Manager
This tool call vectors through the systcm death vector. At system power-up time, a default
Sysæm Death Manager's vector will be installed. The default Sysæm Death Manager will
display either a default or application-specifrc error messagc and an error code. If the
poinær to the system death message is set to a value of $00000000, then the default system
death rnÊssage will bc displayed-

SysDeathMGR Causes sysæm death.

Input
Input

Ertor€odc
PobtøMsg

WORD
I.ONG

System Death error codcs are i¡s follows :

Error Code Description

$0004
$0015
$0017-$0024
$002s
$0026
$0027
$0028
$0030
$0032-$0053
s0100
$0200

Divide by zero.
Segment loader eror.
Can't load package.
Out of memory.
Segment loader eÌror.
File map trashed.
Stack overflow enor.
Please inse¡t disk Gile manager alert).
Memory Manager error.
Can't mount system staú¡p volume.
Heartbeat Task Queue damaged.

Preliminary Notes 73 1t30t86

r^
Description of tlre ConlandTools: Part I

Get Address
This tool call returns an add¡ess of a byæ, word, or long parameter rcferenced by thc
firmwa¡e.

GetAddr Ren¡rns the address of a byæ, $,oît or long parameter

Input ResuhSpæe I.0NGInput Refl,lumber TWORD
Ouçut PtrTolruStaa¿s I-ONG

Refi,lt*tùers are defi¡red below:

Ref. # I-ength
Byte
Byæ
Byæ
Byæ
Byæ
LongWord

Parameter
IRQ Intcmpt Flag (IRQ.htFlae)
IRQ Þata Flae GRQ.DataReg)
IRQ Serial Port 1 Flae GRQ.Seriall)
IRQ Serial Port 2 Flae GRQ.Serial2)
IRQ Apple Talk Flag (IRQ.APILKÐ
ItreartBeat Tick Counær CIickCnÐ

0
I
2
3
4
5

IRQ.IntFlag

IRQ.DataReg

The nvo byæs of inæmrpt stah¡s a¡e defrned as follows:

1 = ñoüS€ button currantly down
I = ñoüsc button was down on last read
Status of Al.{3
t = l/4 second intemrpted
1 = \IBL intemrpted
I = Mega II mouse swiæh intemrpæd
1 = Mega II mouse movement intemrpæd
I = system IRQ line is asseræd

1 = Response byte,0 = Status byte
1 = Abort
I = Desktop mânager sequence prcssed
1 = Flush buffer sequence pressed
I = SRe.
If alt bits clear then no FDB data valid, else
the bits indicaæ tie number of valid bytes
rcceived minus 1. (2-8 byæs total)

D7
D6
D5
D+
D3
D2
DI
DO

D7
D6
D5
BT
D3
m-2

Preliminary Notes 74 1/30/86

Descríptíon of tlu Conland,Tools: Pan I

Mouse Tools
Thesetools interface with the mouse firmware. They can be used to set mouse mode,
inquirc about mouse status, rcad the clamp and position values, and set the clamp values.

ReadMouse Returns mouse position, status, and mode.

krput ResuhSpæe
ResultSpæe
ResuhSpace

Input
krput
Ouçut
Ouput
Ouçut

Xpqsítion
Yposítion
Starus&*lod¿

V/ORDrÍ/oRD
V/ORD
V/ORD
rü/oRD
IWORD

(

InitMouse

SetMouse

Initializcs mouse clamp values !o $000 minimum and $3FF
rnÐdmum, and clea¡s mouse mode and stan¡s.

Input MouseI-ook \¡/ORD

Mousel-ooÈ values irre as follows:

0 = Sea¡ch for mouse
l-7 = Specify mouse slot

Sets the mode value for the mouse.

Input Md¿Value WORD

Mobalue is as follows:

$00 Turn mouse off.$01 Set transparent mode.$03 Set movement inæmrpt mode.$05 Set button intem,rpt mode.$07 Set buton or movement intemrpt mode.$08 Turn mouse off, VBLIRQ active.$09 Set transparent mode, VBLIRQ active.$08 Sct movement inæmrpt mode,
\BLIR'Q active.$0D Set buton intemrpt mode, \/BLIRQ active.$0F set button or movement intemtpt mode,
\ßLIR'Q active.

Preliminary Notes 75 1t30/86

Descrípdonof tlrc CortlandTools: Part I

e HomeMouse Positions mouse at minimum cramp position.

ClearMouse Sets both X and Y axis position ro $000.

ClampMouse Sets.clamp values to new values, and then sets mouse position to the
minimum clamp values.

XuisMínClonp
XaxisMaxClørp
YaxisMinClünp
YaxisMaxClanp

GetMouseClamp Returns the current mouse clamp values

WORD
\¡/ORD
rs/oRD
rü/oRD

Input
Input
Input
Input

Input
krput
Input
krput
Input
Input
krput
krput

RæuhSpace
ResulSpæe
Resuldpæe
ResuhSpace
YaxisMínClamp
YaxísMaxClatnp
XæisMínCløttp
XarísMaxClamp

1VORD
WORD
WORD
WORD
1WORD
WORD
WORD
\ilORD

PostMouse

ServMouse

Positions mouse at the coordinatcs specified in the input parameæis.

Input Xposítion WORDInput Yposition V/ORD

Rcturns the mouse intemrpt status.

Input ResuhSpaceOuçut lruStatus

ID Management
This tool is used to insert, delete, or inquire status rcgarding an identification reference.
The ID is used to tag segmenß as belonging !o a specinc application or desk ¿rccessory.

WORD
WORD

WORD
rü/oRD

GetNewID Returns a value ID numbcr and type.

Input
Ouçut

Twe
IDrun&Type

Preliminary Notes 76 1/30t86

e ' DetetelD

StatusID

Source
Enable Keyboard inæmrpts
Disable Keyboard inæmrpts
Enable Vertical Blanking inæmrpts
Þisable Vertical Blanking inæmrpts
Enable Quarær Second inæmrpts
Dsable Quarær Second int€mrpts
Enable One Second inæmrps -

Dsabie One Second inærrupts
Enable Keyboard Bufferin g
Dsable Keyboard Buffering
Enable FDB Data Inæmrpts
Disable FDB Data Intemrpa

Interrupt Control
This tool allows certain inæmrpt sources to be enabled or disabled.

IntSource

Ðescríptbn of tle ConlandTools: Pan I

Removes a specified ID from the currcnt ID list
krput lDnam&Type \MORD

Returns with Carry set if ID not active, Carry clear if ID is active.

krput lDnw&Type V/ORD

Enables or disables the inæmrpts source specifred by the source
rcference number.

Input SrcRefî,lunrber V/ORD

SrcRefÌ,lumbers are shown below:

Ref. #
$0000
s0001
$0002
s0003
$0004
$000s
$0006
$0007
$0008
$0009
$000n
$0008

PreliminaryNotes v 1/30/86

r-
Desctíptionof tlv Cortland,Tciols: Part I

Firmware Entry Points

F'Wentry Allows some Apple tr entry points to be called from fi¡ll narive
mode.

Input
Input
Input
Input
Input
Input
Input
Input
Ouçut
Ouçut
Ouçut
Ouçut

BYTE
WORD
1VORD
Iü/ORD
WORD
V/ORD
WORD
rù/oRD
WORD
V/ORD
Y/ORD
BYTE

LONG
LONG

AregísterlToFírm
XregísteiToFírm
YregisteiToFírm
EntryRefl,lumber
AregistøtFromFirm
XregisterFromFírm
YregisterFronFírm
ProcessorStaas

Noæ that all inpgß in word format will be tn¡ncated o a byte value
prior o disparching to ttre firmwa¡e enbry poinl

Refercnce # Entr.v point

Belll
Wait
Count

0
I
2

Address

$FBDE
$FCA8
$FDED

Basic Entry Points
The following functions allow the basic entry points to be called from full native mode.
The fiurctions use the globai parameærs defined earlier in this tool set

Tick Counter

GetTick

Basiclnit

Returns the curerit value of the tick counær.

krput ResuhSpace
Ouþut Ticlûou¡tt

Initialiæs the basic device, as defined by the ourput slot in the
Global parameters.

krput InitChøactzr III/ORD
Orçut TiclcCou,nt LONG

InitCtaract¿r must have the charactä in the low byte of the word.

L Prelimínary Notes n 1/30/86

Descríptionof the ConlandTools: Pan I

Basicln

BasicOut

'Ilte Data is returned in the low byte of the word-

Rehrns data from the basic device.

ktput ResuhSpæeOuçut M

Ouþuts a data byæ to the basic device.

Input fu

V/ORD
WORD

WORD

HEX to ASCII

Hexlt

PackBytes

Converts a word inæger into four ASCII byæs

ktput ResuhSpæektput IntegøOuBut ,LSCIIínI

Packs bytcs into packed format.

krput Stø¡Prktput SizePtInput BtfierPtrInput BufferSizeOuçut Nun?aclcBytes

LONG
WORD
LONG

PackBytes and UnPackBytes
PackBytes and Unpackbytes provide for the packing and unpacking of any data. The
functions are usually used for graphic images.

LONG
LONG
LONG
LONG
V/ORD

StartPtris equal to the start of the a¡ea to be packed. SízePtr is
equal to a IVORD containing the size of the area. BuferPn is equal
to the start of the ouçut buffer a¡ea.

Upon completion of the call, the pointer to the area to be packed is
moved forward to the next packable byte, and the size of area
point€d to by the second input parameær is reduced by the number
of bytes travened. Thercforc, packing data and r¡riting it to a file
could be accomplished by using code simila¡ to the Pæcal code
segfnent that follows:

Preliminøry Notes n 1/30/86

Descríption ol the Conland, Tools : Part I

FLJNCTION packbytes (POINTER;
POINTER;
POINTER;
INTEGER)

: INTEGER; EXTERNAL;

picsize:= ï7û0;'!É!rg:.= $4Ni {note: íf large enough, could require bu orc cail}
REPEAT

løwmuc h : = P ac lcBy tes (p i c p tr,p i c s i ze,b ufp tr,bufsi z e) ;
w r í t e (f ,b ufp tr, howmuc h) ;

IJNTILpicsíze=O;

UnPackBytes Unpacks bytes from packed format.

Bt$erPt
BufferSize
Unpclo4røPtr
Six¿Pt
NumUnpaclrBytes

pyy
PßSUeh{pt
btdsíze

AR
AR

v
v

Input
Input
Input
Input
Ouçut

LONG
WORD
LONG
LONG
V/ORD

B_uf-9rltr points o the buffer containing the packed data.
Buffersize contains the size of the buffel con-tainins the oacked data.
unpæltAreaPrr is a pointer to the arca wherc the uãpaclied d,ata will
be placed. SixePtr contains the size of the area to contain the
unpacted datz. NutnUnpackBytes is the number of bytes
unpacked.

Upon completion, ttre poinær to the unpacked data is positioned one
past the læt unpacked byte and the size of the a¡ea is reduced by the
amount unpacked. Therefore, the following Pascal code segment
could be used to unpack data from a file:

Preliminary Notes æ 1t30/86

Dæcríption of tlu CortlandTools: Pan I

FLJNCTION unpackbytes (POINTER;
INTEGER;
POINTER;
POINTER): INTEGER;

mø*:= 0; {i.e. start of afrle}
picsize:= t7D00
Wyg-:.=_$400; {note: if large enough, could, require but oru call}REPEAT

setfilemark(mark);
r e oà(f ,b uþ tr,b ufs i z e) ;
lpwmuc h : = -unp-ackfo tes(b ufp tr,bufs ize,p í cp t,pic size) ;mark:= mark + Iøwtrutch;

UNTIL ((pícsize=0)oreof(f)); {æf æstincaseof tuddata}

VAR piqt
VAR pícsize

EXTERNAL;

The pryk$ data is in thg form of I byæ containing a fÌag in
count in ttre rcmaining 6 bits, followèd by one or äorc data
flags. Their descriptiõn is as follows:

b$pttr
br{síze

O0:rxxxxx : (xxxxxx :0 -> 63) .=

0lxxxxxx : (xxxxxx :2,4,5, or 6) =

lOxxxxxx: (xxxxxx:0 -> 63) =

llx,rxxxx : (xxxxxx :0 -> 63) =

I tD æ byæs follow - all different

3, 5, 6, or 7 repeats of next byte

I to 64 rcpeats of ncxt 4 bytes

I b & repeats of next 1 byæ
taken as 4 byæs (as in '1O'case)

the fint 2 bits and a
bytes depending on the

PrelimirøryNotes 81 I/30/86

